Современная электронная библиотека ModernLib.Net

Физика – это интересно! - Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей

ModernLib.Net / Александр Дмитриев / Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей - Чтение (Ознакомительный отрывок) (стр. 2)
Автор: Александр Дмитриев
Жанр:
Серия: Физика – это интересно!

 

 


Действительно, температура поверхности и металла, и дерева в одном и том же помещении одинаковая. Дело в том, что температура – это еще не самое главное. Есть такое понятие, как теплопроводность.

Что это означает? Это означает то, как вещество, из которого состоит предмет, пропускает (проводит) через себя тепло. Тепло можно представить себе как невидимую воду, текущую через все предметы. Есть только одно правило, которому эта «вода» – или тепло – подчиняется. Тепло всегда перетекает от более теплого тела к более холодному.

Именно поэтому было время, когда ученые думали, что наш мир через много-много лет ожидает «тепловая смерть». Ведь если все теплые тела отдадут тепло более холодным, нагревая их, то настанет такой момент, когда все тела станут одинаковой температуры. И все процессы, все движение, все реакции (например, переваривание пищи в желудке) станут невозможными. Мир как бы будет остановлен. (На самом деле, во-первых, до этого еще так далеко, что и нам, и нашим прапрапрапрапраправнукам эта опасность не грозит. Во-вторых, ученые потом подумали получше и поняли, что вселенная может оказаться бесконечной и тогда «тепловая смерть» не наступит.)

Итак, разные тела проводят тепло по-разному. Очень хорошо проводят тепло металлы. Металлы для тепла – как широкие речки, по ним тепло быстро и далеко течет.

Если начать охлаждать (или нагревать) любую часть металлического предмета, то очень быстро тепло распространяется на весь предмет (или весь предмет охлаждается). Кстати, если металл охладить до невероятно низкой температуры, то у металла начинают проявляться просто фантастические свойства. Например, пущенный по металлу ток будет бежать вечно, никогда не ослабляясь. В обычных проводах ток потихонечку слабеет с расстоянием и через несколько тысяч километров может почти совсем исчезнуть. (Ток, как и тепло, лучше всего поначалу представлять в виде воды. Вода в реке быстрее течет у истока и медленнее – у устья.)

Другие материалы проводят тепло хуже и отдают тепло только с поверхности. Дерево, например, почти вообще не проводит тепло. Это уже не «речка», а плотина какая-то! Чем хуже проводит тепло материал, тем лучше им защищаться от холода (или жары). Например, обычный жир очень плохо проводит тепло (у него низкая теплопроводность, как сказали бы физики). Поэтому все теплокровные животные, живущие в холодных морях или на севере, такие жирные. Тюлень, белый медведь, каланы, морские львы и котики – посмотрите на них: жировой слой с его плохой теплопроводностью служит им скафандром, одеялом, укутывающим их с ног до головы. Проведем простой опыт. Для него нам понадобятся две ложки: деревянная и алюминиевая. Если у тебя не найдется в доме деревянной ложки, возьми деревянную палочку или обычный карандаш. Вместо алюминиевой ложки можно взять кусок толстой медной проволоки. Вскипяти чайник и налей кипятка в обычную чашку. Теперь возьми в одну руку деревянную ложку (карандаш), а в другую – алюминиевую (кусок проволоки) и опусти обе в кипяток. Некоторое время ты можешь размешивать кипяток и той и другой ложкой. Но скоро металл придется бросить – он сильно нагревается.

Теперь нам ясно, как отличаются вещества по теплопроводности. Ведь температура воды в чашке одна и та же, а тепло, бегущее по опущенным в воду предметам, передается по-разному. Еще можно представить, что если тепло – это невидимая жидкость, то металл – это удобный шланг, по которому жидкость бежит быстро. А дерево, пластмасса – это губка, которая, хоть и впитывает тепло, но медленно и отдает неохотно.

И нам становится ясно, почему в бане (сауне) гвозди забивают глубоко, чтобы не торчали шляпки наружу. Это все из-за теплопроводности!

Практический совет: никогда не дотрагивайся языком до железных предметов на морозе. Жидкость, которая содержится на языке, с такой скоростью отдает свое тепло металлу (ведь у металла хорошая теплопроводность!), что мгновенно превращается в лед, и язык прочно пристывает, примерзает к металлу. Но уж если такое произошло, надо чтобы кто-нибудь налил большую кружку теплой воды и лил на металл и язык. Когда металл в этом месте нагреется, лед растает и язык отлипнет от металла сам.

9

Как вода ломает железо

Для опыта нам потребуются: пустая жестяная банка из-под пепси, колы или пива.

Старинная русская пословица гласит: капля камень точит. И это действительно так. Когда мне довелось путешествовать по глубоким каньонам (ущельям) в горах, я удивлялся тому, как мягкая вода умудрилась проточить глубочайшие трещины в горах. Но вода способна еще и не на такое! И виноваты здесь законы физики.

Все знают, как водители любят ругать наши плохие дороги. Вроде бы заливают асфальтом – глянь, а через пару лет опять все в трещинах и ямах. И здесь срабатывает тот же закон физики. Давайте разберемся.

На фото видно, что обычная банка из-под напитка налита полностью водой. Поставим ее в морозилку.


Тела при нагревании обычно расширяются, а при охлаждении – сжимаются. Это неудобное явление доставляет много хлопот ученым, инженерам. Например, если астрономам надо наблюдать за звездным небом, то приходится сидеть у большого телескопа без тепла, потому что даже от обычной печки шестиметровое зеркало телескопа будет так сильно изменять свою форму (расширяясь), что все изображение поплывет, будет дрожать и никаких наблюдений не получится. Кстати, ученые работали над созданием таких стекол, которые бы не расширялись (или очень слабо расширялись) при нагревании. Им удалось создать стекло под названием «пирекс», которое почти не расширяется при нагревании и не сжимается при охлаждении.

Сделаем простой опыт, чтобы увидеть это своими глазами. Возьмем пустую жестяную банку из-под пепси, колы или пива. Нальем в нее обычной холодной воды из-под крана ровно до самого верха, чтобы вода стояла вровень с краями дырочки. Аккуратно поставим банку вертикально в морозилку и предупредим всех дома, чтобы ее не трогали. И оставим так на ночь.

Когда мы утром достанем банку, вода превратится в лед. Но самое интересное, что льда будет больше, чем мы наливали воды! Он вылезет наружу шапкой и нависнет сверху банки почти на сантиметр. От напора изнутри, когда я делал сам этот опыт, банка лопнула, то есть вода порвала металл!

На фотографии видно, что банка лопнула вдоль, да еще и сверху вылезла целая шапка льда!


Почему так происходит? Потому что вода, в отличие от многих других веществ, замерзая и превращаясь в лед, расширяется. Ее как бы становится больше. Поэтому в природе, когда осень превращается в зиму, а вода превращается в лед, в каждой трещине льду становится тесно. Лед расширяется при замерзании и разрывает асфальт, камни, дерево. Именно так разрушаются постепенно целые горы. Поэтому в странах, где зимы нет, дороги содержать в порядке легче. У нас же стоит образоваться мелкой трещинке, как в нее проникает вода и, замерзая, взрывает льдом изнутри. Если же в доме отключили тепло зимой, из труб надо слить воду – а то она замерзнет и металлические трубы попросту порвет, так что и не починить. Что поделать, законы природы…

Практический совет: не оставляйте жидкость в стеклянной бутылке или другом сосуде на морозе: стекло разорвет, и будет неприятность.

10

Почему океан не замерзает, или Вымораживание чистой воды

Для опыта нам потребуются: пластиковая баночка, соль.

Все говорят про экологию. Модное слово такое. Обычно при этом имеют в виду загрязнение окружающего нас мира. Действительно, загрязнить можно все что угодно. Проблема эта стара как сам мир. Например, многие первобытные племена вынуждены были время от времени менять место стоянки, хотя пищи было еще вдоволь и враги не нападали. Просто отходы, мусор, грязь так забивали поселение, что становилось невыносимым само существование – и люди уходили. А вот жители древнего русского города Новгорода примерно один раз в каждые пятнадцать лет перестилали мостовые из бревен. Грязь затапливала улицы, и приходилось поверх старых бревен класть новые. Когда археологи стали раскапывать эти бревна, оказалось, что чуть ли не пятнадцать или двадцать слоев были наложены друг на друга! Огромная поленница на месте улицы!

На фотографии видно, что внутри куска льда образуются как бы пузырьки, направленные к центру. Это показывает, что лед растет от стенок внутрь. То есть получается как бы стаканчик, внутри которого еще не замерзшая вода.


Как же борются с загрязнением воды? Ее пропускают через специальные фильтры, обрабатывают различными веществами, отстаивают в отстойниках… Мы же попробуем простой опыт с вымораживанием.

Возьми любую пластиковую (не стеклянную!) баночку. Можно использовать пустую коробочку из-под йогурта. Только помой ее тщательно с мылом и ополосни, чтобы она была чистой. (Мы уже знаем, что замораживать воду в стеклянной банке нельзя.) Налей в нее обычной воды из-под крана. Добавь четверть чайной ложки соли. Размешай. На вкус это будет обычная соленая вода, достаточно противная, кстати.

Поставь ее в морозилку на ночь. Пусть вода замерзнет. Утром достань ее из морозилки и посмотри внимательно на лед. Во-первых, ты увидишь, что он весь какой-то ребристый и бугристый, словно из смерзшихся иголок и крупинок. По крайней мере, отличается от обычного льда.

А вот на этой фотографии видно, что внутри прозрачного льда образуется как бы «вставленный» кусок изо льда непрозрачного. Почему? Кстати, обратите внимание, что у куска льда есть «крышка». Я подкрасил верх зеленкой, чтобы ее лучше было видно. Эта крышка образуется сразу, как лед на озере, и потом растет вниз, навстречу льду, нарастающему на стенках и дне.


Если начать подтаивать лед под струей воды, то видно, что крышка и дно куска льда более плотные, в первую очередь тает рыхлый лед, который замерз в последнюю очередь.


Здесь я дам еще пояснения к опыту. Мы видим, что внутри есть непрозрачный цилиндр льда. Оказывается, что чем больше в воде растворено всяких солей, чем больше в ней примесей, тем сильнее должен быть мороз, чтобы заморозить ее. Поэтому происходит забавная вещь: первым вдоль стенок и дна замерзает более чистая вода, а вода с примесями и растворенными солями смерзается в центре потом, в последнюю очередь. Это означает, что если заморозить воду с равномерно растворенными в ней примесями (попросту – грязью), то на стенках будет более чистый лед, а внутри – более грязный. Значит, просто заморозив воду, мы разделяем ее по чистоте! Можно без всяких фильтров получать более чистую воду из загрязненной. Итак, как получить более чистую воду?

Надо оставить эту пластмассовую баночку на некоторое время в теплой комнате, положив в миску. Когда лед внутри немного оттает, слей из нее «первую» воду в отдельную чашку и поставь рядом.

Очень важно не прозевать момент. Нужно через каждые полчаса сливать воду из пластмассовой баночки в раковину, чтобы под конец остался лишь небольшой кусочек льда (размером с ластик). Вот эту «последнюю» воду уже тоже можно перелить еще в одну чашку.

У тебя две чашки. В одной вода с верхнего слоя льда, во второй вода «из глубины» льда. Попробуй теперь на вкус воду из одной и из другой чашки. Ты увидишь, что вода отличается. Оказывается, внутри льда собралась соленая вода, а снаружи – чистая!

Происходит это потому, что вода замерзает неодинаково. Чем соленее вода, тем хуже она замерзает. Тепло отнимается в первую очередь от краев, поэтому у краев вода начинает замерзать – и более соленый раствор как бы перемещается внутрь.

То есть, если у нас есть загрязненная вода, мы ее замораживаем, а потом этот кусок льда ставим «обтаивать». Не дожидаемся, пока он обтает полностью, а собираем только воду с внешних краев – это более чистая вода. В принципе, если проделать это несколько раз подряд, – выбрасывая «грязный» лед и повторно замораживая уже более чистую воду с краев, – можно добиться довольно высокой очистки воды в домашних условиях. Именно по причине более высокой солености вода в морях и океанах замерзает при более низких температурах, чем пресные озера. Вода же в океанах соленая!

11

Компас из иголки

Для опыта нам потребуются: кружка, иголка, небольшой кусочек газеты.

Если мы еще не устали от жидкостей, попробуем ответить на один простой вопрос: как жуку-водомерке удается бегать по воде? Все наверняка видели летом маленьких юрких жучков, которые шныряют по поверхности воды как заправские конькобежцы. И ведь не тонут, жуки такие!

Дело в том, что вода у самой поверхности обладает особыми свойствами. Мы не будем долго объяснять, в чем тут дело, просто запомним, что это действуют те же силы, которые заставляют подниматься жидкость по капиллярам. Можно представить, что каждая жидкость сверху как бы покрыта особой невидимой пленочкой. Для больших предметов (как мы с вами, хотя мы и не предметы) эти силы незаметны. А вот муравей или мотылек, попавший в каплю воды, не может из нее выбраться – невидимые силы склеивают ему лапки и не дают вылезти.

Иголка плавает по поверхности как жук-плавунец.


Мы можем провести интересный опыт. Представим, что мы оказались в глухой тайге и заблудились. У нас нет ничего, кроме кружки и иголки. (Кстати, если нет даже кружки, ее можно сделать из бересты, слепить из глины, наконец, просто найти кусок коры подходящей формы и зачерпнуть в него воды – лишь бы иголка поместилась…)

Как из этого смастерить прибор, который выведет нас к жилью? Оказывается, если знать законы физики (понимать, а не учить), то все просто.

Силы, которые действуют на поверхности жидкости, могут выдерживать железную иголку – но при одном условии. Иголка должна быть жирной, и еще ее надо очень аккуратно умудриться положить на поверхность воды. Намажем иголку маслом. Надо это сделать так: потрогайте кусок масла пальцем, а потом потрите этим пальцем иголку. Теперь налейте в кружку обычной воды из-под крана и поставьте кружку на стол. Надо, чтобы вода успокоилась и не дрожала. Теперь оторвем небольшой кусочек газеты и положим его на поверхность воды. Сверху на плавающую газету аккуратно положим иголку. Оставим газету намокать. Через какое-то время газета намокнет и опустится ко дну. А иголка останется плавать! На фотографии на иголку показывает красная стрелка.

На фотографии отлично видно по отражению света, что вокруг иголки образована как бы «впадина», то есть железо плавает за счет сил поверхностного натяжения воды.

Если поднести к ней магнит, она будет поворачиваться за ним, как настоящий компас. Так что, если вы хотите не потеряться в лесу, берите с собой иголку, натертую предварительно об магнит, а кружку можно сделать из бересты! Пальцы маслом можно и не мазать (на них всегда есть тонкий слой сала), а вместо газеты – несколько сухих травинок.

Этот опыт придумал не я, но, думаю, от этого он не стал менее интересным.

Практический совет: если вам доведется в тайге держать железную кружку с горячим чаем, то, чтобы не обжигать руки, сделайте себе на кружку кожух из бересты с упавшей березы. Отрежьте прямоугольник, сверните его в трубку под размер кружки, сшейте тонкой полоской бересты или веревочки, а для ручки оставьте прорезь. Как на рисунке.

12

Гейзер

Для опыта нам потребуется: металлический чайник с длинным носиком.

Раз уж зашла речь о природе, вспомним про удивительное явление – гейзер. Гейзер – это созданный природой горячий фонтан, который бьет из земли через определенные промежутки времени. Есть гейзеры, по которым уже много сотен лет можно проверять часы. Какое-то время все вокруг спокойно, как вдруг из-под земли, прямо из скалы, вырывается столб кипящей воды, поднимаясь у больших гейзеров на десятки метров.

Что же это за таинственные часы, которые заставляют гейзеры «идти» с такой точностью? Каким образом в природе создаются сами собой механизмы, способные отмерять время?

Надо заметить здесь, что в природе существует огромное количество механизмов, точно измеряющих время. Например, наша планета. Она, вращаясь вокруг своей оси, совершает точно один оборот за 24 часа. А ведь могло быть и иначе. Один день длится пять часов, другой – сто пятнадцать, третий – десять минут. Вот было бы здорово! Мы просто привыкли и не задумываемся, что повороты реки непредсказуемы, а повороты планет – предсказуемы. Но ведь бывает и так, что планеты сходят с орбит и звезды взрываются…

Но вернемся к гейзеру. Давайте рассмотрим, как устроен гейзер (или подземный фонтан) в природе. Чаще всего он располагается поблизости от вулкана, там, где раскаленная магма (подземное расплавленное вещество) очень близко подходит к поверхности. Представим, что в горе существует трещина, как бы трубка, которая уходит глубоко внутрь вулкана и с обоих сторон обогревается раскаленной магмой.

Смотрите, что происходит. Раскаленная магма через слой камня нагревает воду, попавшую в трещину (трубу). Вода закипает – но, как и в обычном чайнике, для этого требуется какое-то время. Так что чем больше гейзер, тем больше у него промежуток между извержениями. Когда вода закипит, она закипает сразу во всей трубе, потому что подогревается со всех сторон, а не только снизу (как в чайнике).

Закипев, вода, естественно, превращается в пар. А пар занимает гораздо больший объем – попросту говоря, пару нужно гораздо больше места, чем воде, из которой он образовался. (Еще говорят так: давление внутри трубы повышается. То есть пар давит во все стороны.) Пар, толкаясь и шипя, начинает прорываться наружу, через слой воды – вверх, с огромной силой. Вот как на следующем рисунке.

После того как вода и пар выплеснулись из трубы и труба на какое-то мгновение стала почти пустая, в нее снова затекает уже холодная вода из озерка, которое обычно находится над гейзером. И все повторяется сначала. Поскольку температура воды в озере меняется несильно, температура магмы – тоже, то гейзер закипает всегда через один и тот же промежуток времени. Получается как если бы мы всегда наливали одинаковое количество воды в чайник (причем вода была бы всегда одной и той же температуры), включали конфорку электроплиты на одно и то же деление и замеряли, сколько времени требуется, чтобы вода вскипела. Понятно, что время будет всегда одинаковым.

Можно ли наблюдать это явление в домашних условиях? Я долго думал, как сделать простой прибор, но все выходили какие-то сложные трубки с подогревом. И вдруг вспомнил старые добрые чайники с длинным носиком. Не эти, современные, пластмассовые – а металлические. Когда их, бывало, наливали доверху и ставили на газовую горелку, то при сильном пламени вода в носике чайника закипала быстрее, чем во всем чайнике, – и чайник начинал плеваться водяными брызгами изо всех сил. Это и есть точная модель гейзера. Носик играет роль трещины в земле, заполненной водой. Газовая горелка – роль огненной магмы. А вскипающая вода, превращаясь в пар, точно так же выталкивает ту воду, что находится выше, наружу. Если ты найдешь такой чайник, попробуй налить его водой полным и поставь на сильный огонь. Может быть, получится гейзер.

Из этой главки мы незаметно познакомились со многими важными явлениями, которые используются в жизни: например, свойство воды при закипании образовывать пар. Мы узнали, что пару нужно больше места, чем воде, и он начинает сильно расширяться. Это свойство пара использовалось в первых паровозах. Сгорая в топке, дрова подогревали котел, в котором образовывался пар. Пар рвался наружу, попадал в специальную камеру, где толкал поршень… В современных машинах используется бензин, который, сгорая, тоже образует газообразное вещество (что-то вроде пара, только очень ядовитого).

Практический совет: никогда не разогревайте консервные банки, предварительно не открыв их. Ведь жидкость, содержащаяся внутри, может вскипеть – и тогда банку разорвет как бомбу. Веселого мало: во-первых, содержимое банки размажется по стенкам и потолку, а, во-вторых, кипящая жидкость может сильно обжечь того, кто не знает физики!

13

Сторож из крышки

Для опыта нам потребуются: кастрюлька с водой, завинчивающаяся железная крышка от любой банки.

– А у вас молоко убежало! – говорил Карлсон, который живет на крыше, фрекен Бок, чтобы избежать нахлобучки. Действительно, что может быть страшнее для хозяйки, чем убежавшее молоко? Сторожишь его, сторожишь – и никакого толку. Плита вся залита, да и запах ужасный. Что же делать?

И вот изобретательные люди придумали «сторож», который начинает постукивать по дну кастрюльки с молоком перед тем, как оно закипит. Как же устроен этот хитрый прибор?

Оказывается, это всего-навсего плоский металлический кружок с вдавленной ямкой в форме спирали. Как на рисунке.

Молочник имеет небольшой выход сбоку, где железо приподнято и не очень плотно прилегает к дну кастрюли. Пользуются им очень просто: кладут на дно и наливают сверху молока. Когда молоко начинает нагреваться, то оно расширяется. Теплое молоко, расширившись и увеличившись в объеме, начинает подниматься наверх (по закону Архимеда – но мы пока о нем не будем рассказывать).

Если бы молочника не было, нагретое молоко свободно поднималось бы ото дна и на его место приходило более холодное сверху. А когда на дне лежит молочник, то нагретое молоко не может подняться прямо вверх из-под молочника, оно начинает выбегать по спирали из «туннеля» к тому месту, где у молочника сделан выход. И пока бежит, нагревается от дна еще сильнее. Если же температура молока близка к закипанию, молоко успевает закипеть под молочником до того, как успеет выскочить наружу и смешаться с остальным молоком. Ну а закипев, оно превращается в молочный пар – то есть превращается в пузыри, которые приподнимают молочник словно маленькие воздушные шарики и заставляют его стучать по дну кастрюли!

Как сделать опыт дома? Очень просто. Если нет под рукой молочника, надо взять обычную завинчивающуюся железную крышку от любой банки. Положите ее на дно кастрюльки с водой так, чтобы она лежала «горбиком» кверху и между ее поверхностью и дном кастрюли было пространство, заполненное водой. Поставьте кастрюльку подогреваться и наблюдайте. Когда вода будет близка к закипанию, под крышкой она уже начнет образовывать пузыри, и крышка «отсалютует», приподнявшись от дна одним краем.

Вот какой хитрый прибор можно сделать из обычного куска железа и как много разных законов использовать, чтобы он работал. В принципе, молочник похож на свернутый в спираль и положенный на бок гейзер. И это действительно так. Очень важное качество для вдумчивого человека – уметь увидеть одинаковое по сути в разном по форме. Ну, скажем, что общего между свечкой и будильником? Но об этом – в следующей главе.

Практический совет: некоторые жидкости оказываются еще более вязкими, чем вода или молоко. Поэтому архимедовой силы не хватает, чтобы «приподнимать» более нагретые слои и смешивать их с более холодными. И нагретый слой у дна кастрюли может подгореть. Так что помешивайте при готовке гороховый суп, рисовую и манную каши и другие вязкие жидкости.

14

Горящее время

Для опыта нам потребуются: свечка, несколько небольших гвоздиков.

Многое из того, что мы видим вокруг, совершается по одним и тем же законам, хотя на первый взгляд сильно отличается друг от друга.

Например, такое явление, как поток, течение. Потоки могут быть разными. Это может быть жидкость, текущая по поверхности (ручей), текущая внутри чего-то (подземная река, вода в трубе). Но в металле может течь ток, то есть электрический заряд. В воздухе течение образуется из самого воздуха, а может образовываться из других газовых смесей, например поток газа из автомобильной выхлопной трубы. Световой поток может «течь» по оптическому волокну… Даже твердые камни могут течь – когда сходят потоком со склона горы.

И во всех этих течениях есть как одинаковые, так и различные черты. Интересно подмечать одинаковое в разном и разное в одинаковом. Возьмем в качестве примера поток времени. Он невидим. Его можно только заметить по изменениям вокруг. Так, колышущиеся ветви деревьев высоко над головой говорят о ветре.

Долгое время человечество жило и просто наблюдало за течением времени. Но настал момент, когда захотелось измерить его скорость. Первыми такими «приборами» стали солнце, луна, звезды. Уже около тридцати тысяч лет назад наши предки носили с собой календари. Такой календарь был вырезан на костяной палочке и показывал изменение фазы луны (когда луна полная, а когда серпом…).

Но бывает, что хочется узнать время точнее, чем просто «утро» или «вечер». Кроме того, солнце не всегда видно за облаками, да и звезды не каждую ночь светят. И человек стал придумывать разные способы измерить скорость течения потока времени.

Одним из самых первых и самых простых способов стал, конечно же, способ измерения времени с помощью горения. Если взять две примерно одинаковые по длине палки из одного и того же дерева, то они сгорят примерно за одно и то же время. Из небольшого светильника масло выгорает всегда примерно за одно и то же время. Потом научились делать свечи. И придумали новый способ отмечать время. Рассмотрим картинку.

Поставим свечку на блюдечко. Предварительно в свечку на одинаковом расстоянии друг от друга воткнем небольшие гвоздики, например обойные. В спокойном воздухе комнаты свечка горит почти с одинаковой скоростью по всей длине. Поэтому через примерно равные промежутки времени гвоздики будут падать по мере выгорания свечи и стукаться о блюдечко, отбивая время.

Китайцы, построившие Великую Китайскую стену, чтобы защищаться от набегов кочевников из степей, несли стражу вдоль всей стены. Но стражникам надо меняться. Поэтому китайцы изготавливали большие свечи, в которые вставляли металлические шары. Под такую свечку ставили большой медный таз. Металлический шар, падая в таз, отбивал время так громко, что даже ленивый стражник просыпался!

Можно усложнить наш опыт, воткнув в свечку сначала один гвоздик, пониже два рядом, еще ниже три рядом, и так далее. Тогда свечка будет «отбивать» часы как настоящие настенные, с боем!

Практический совет: всегда, оставляя свечку гореть, ставьте ее в небольшой тазик, в который налейте немного воды. Мало ли что в жизни случается, например доведется заснуть и забыть потушить свечку. Немало людей погибло в пожарах от таких случаев. А свечка, окруженная водой, становится тигром в клетке – безопасной.

15

Капающее время

Для опыта нам потребуются: любая пустая консервная банка, шило.

Мы говорим иногда: «много воды утекло» про что-то, что было давным-давно. Значит, можно измерять течение времени с помощью другого потока – водного. Такой прибор придумали древние греки, назвав его «клипсидра», или «водяные часы». Что это за такие водяные часы? Да просто дырявое ведро! Я даже не буду рисовать рисунок. Уж дырявое ведро все видели или способны представить. Если в дне любого сосуда проделать дырочку, а потом залить доверху водой, то вода выльется через эту дырочку за определенное время.

Возьмите любую пустую консервную банку. Пробейте гвоздиком в стенке около самого дна маленькую дырку. Поставьте банку в раковину, налейте в нее воды и следите за понижением уровня. Теперь возьмите часы и через каждые полминуты ставьте отметку – где находился уровень воды. Проще всего отметку делать шилом, нанося царапинку на стенку банки внутри. Теперь из банки получился секундомер! Конечно, он не очень удобный, не очень точный, но все-таки это настоящие часы, которыми пользовались греки много веков.

Кстати, вы обратили внимание, что расстояние между отметками сначала было большое, а затем стало уменьшаться? Это потому, что вода вытекает из сосуда все медленнее, по мере того как понижается ее уровень. Греки, чтобы справиться с этим недостатком, делали конические сосуды для своих клипсидр.

Практический совет: если, не дай бог, придется сильно пораниться или столкнуться с раненым, помни – кровь это жидкость, человек – сосуд. Поэтому от того, с какой скоростью вытекает из раны кровь, зависит и то, хватит ли времени, чтобы спасти человека. Чем сильнее бьет струя, тем быстрее надо действовать. Самый простой способ – смело и сильно зажать рану пальцем или ладонью или куском плотно сложенной чистой материи и затем уже, замедлив вытекание крови и, соответственно, увеличив время на «часах жизни», искать материал для жгута, предпринимать другие действия. И обязательно почитай книги об оказании первой помощи. Есть вещи, которые надо в жизни знать обязательно, – и это не только физика.

16

Секундомер из веревки

Для опыта нам потребуются: один метр веревки, любой груз (например, камешек).

Конечно, дырявое ведро тоже можно использовать в качестве часов. Но как-то не очень удобно ходить с ним по улице и на вопрос «Который час?» говорить: «Уже полведра». Человечество перестало измерять время длиной тени от солнца, песка в колбе, водой в клипсидре, шариками в свечке и изобрело механические часы, использующие энергию пружины или падающей гири для работы. Но мы учимся – и сейчас я расскажу, как сделать секундомер из веревки.


  • Страницы:
    1, 2, 3