Современная электронная библиотека ModernLib.Net

Планета Марс

ModernLib.Net / Бронштэн Виталий / Планета Марс - Чтение (стр. 1)
Автор: Бронштэн Виталий
Жанр:

 

 


Бронштэн Виталий
Планета Марс

      Виталий Александрович Бронштэч
      ПЛАНЕТА МАРС
      СОДЕРЖАНИЕ
      Предисловие
      Введение Вечно загадочный Марс Марс как планета Спутники Марса
      Часть 1 Исследование Марса классическими методами астрономии Марс в телескоп Каналы Марса Атмосфера и фиолетовый слой Из чего состоит атмосфера Марса? Температурный режим планеты Марсианские материки и "моря" Макрорельеф "красной планеты" Внутреннее строение Марса
      Часть II Космические исследования Марса
      Кратеры и каньоны на Марсе Геология Марса развивается Климат Марса в прошлом Большая пылевая буря и ее причины Строение атмосферы и магнитное поле Есть ля жизнь на Марсе? Рекомендуемая литература
      ПРЕДИСЛОВИЕ
      Исследование планет Солнечной системы, особенно планет типа Земли, представляет большой научный интерес не только для астрономии, но и для наук о Земле-геологии и геофизики. Если раньше изучение Марса было уделом одних астрономов и велось методами наземной оптической астрономии, то теперь ситуация в корне изменилась. Исследование природы этой столь популярной даже в широких кругах неспециалистов планеты ведется с космических аппаратов и автоматических межпланетных станций, работающих вблизи Марса, на орбитах искусственных спутников Марса и на самой поверхности планеты. Собран и проанализирован громадный материал, сделаны важнейшие по своему значению выводы. Большая заслуга в этом принадлежит советским ученым и конструкторам.
      Интерес, проявляемый к результатам исследования планеты Марс советскими людьми, требует разъяснения этого исследования в доступной форме, что и побудило автора написать настоящую книжку. Мы попытались рассказать в ней не только о современных представлениях о природе Марса, но и об истории его изучения различными методами, о смене одних представлений другими, о закономерности такой смены взглядов, как результата прогресса наших знаний и методов исследования.
      Разумеется, исследование Марса продолжается. В частности, когда писалась эта книга, в США были запущены автоматические станции "Викинг". Они передали
      о Марсе новую, весьма интересную информацию, которую удалось отразить (уже в корректуре) в одном из разделов книги. Знание не стоит на месте, в особенности, когда речь идет о наших соседях по Солнечной системе
      планетах.
      Автор пользуется случаем, чтобы поблагодарить доктора физико-математических наук В. И. Мороза за ценные советы и замечания, сделанные им при подготовке
      настоящей книжки. В. А. Бронштэн
      ВВЕДЕНИЕ
      Вечно загадочный Марс
      Вряд ли какая-нибудь планета вызывала у людей столько споров и дискуссий, как Марс. Спорили не только ученые, но и люди самых различных профессий, занятий, возрастов.
      Совершенствовались методы исследований, сменяли друг друга астрономы разных поколений, изменялся и самый характер дискуссий. В десятых-двадцатых годах нашего века спорили главным образом о каналах Марса, о наличии там разумных обитателей (марсиан). В пятидесятых годах много спорили о существовании на Марсе растительности и вообще органической жизни.
      Какой планете посвящено наибольшее число фантастических романов, повестей, рассказов? Конечно, Марсу. Фантазия писателей подогревала интерес широкой публики к природе загадочной планеты. Астрономов забрасывали вопросами.
      А они, исследователи Вселенной, проводили ночи напролет наедине с красной планетой, сначала впиваясь в нее глазами, усиленными оптикой телескопов, затем снимая ее на чувствительные фотопластинки, стремясь запечатлеть вид планеты и ее спектр, наконец, поглядывая на перья самописцев, следя за сменой цифр на табло электронных регистраторов, за работой приборов, принимающих изображения планеты от космических аппаратов.
      Шли годы и десятилетия, менялись методы исследований, накапливались наши знания о природе красной планеты, на место одних загадок вставали другие, росло число ученых, стремившихся проникнуть в тайны Марса. О том, как все это происходило, и рассказывается в этой книжке.
      Марс как планета
      Первые наблюдения Марса проводились еще до изобретения телескопа. Это были позиционные наблюдения. Их целью было определение точных положений планеты по отношению к звездам. Такие наблюдения проводил еще Коперник, стараясь подкрепить ими свою гелиоцентрическую систему мира. Точность наблюдений Коперника составляла около одной минуты дуги.
      Значительно более точными были наблюдения знаменитого датского астронома Тихо Браге; их точность доходила до 10 секунд дуги. За свою долгую жизнь Тихо пронаблюдал десять противостояний Марса, накопив непрерывный ряд наблюдений за 22 года. Этот ценнейший материал попал после смерти Тихо в самые верные руки-в руки Иоганна Кеплера, прекрасного вычислителя, человека широких взглядов, не связывавшего себя привычными в те времена представлениями о движении планет по окружностям-самым "совершенным" из всех кривых. Обработка наблюдений положений Марса, выполненных Тихо Браге, привела Кеплера к открытию трех его знаменитых законов движения планет. Истинной формой планетных орбит оказался эллипс, а Солнце находилось в одном из фокусов этого эллипса (общем для всех планет).
      Как хорошо, что для выяснения законов движений планет и формы их орбит был выбран именно Марс, а, скажем, не Венера. Орбита Марса имеет эксцентриситет 0,093, тогда как орбита Венеры-только 0,007, в 13 раз меньше. Быть может, имея дело с наблюдениями Венеры или Юпитера, Кеплер не открыл бы свой первый закон, не обнаружил бы отличия орбиты планеты от окружности.
      И все же выбор Марса не был делом случая. Наблюдать Венеру (а тем более Меркурий) очень трудно, так как эта планета не отходит от Солнца далее 48°, наблюдается на светлом небе и ее положение трудно привязывать к положениям неподвижных звезд. С другой стороны, Юпитер и Сатурн движутся по небу очень медленно, так как находятся относительно далеко от Земли.' Марс же близок к Земле, сравнительно быстро переме-^ щается среди звезд, его можно наблюдать на фоне,1 звездного неба на любых угловых расстояниях от Солн^
      ца, он описывает довольно широкие петли около эпохи противостояния.
      Элементы орбиты Марса, найденные Кеплером, мало отличались от современных. Например, большая полуось орбиты по Кеплеру равнялась 1,5264 астрономической единицы (а. е.), тогда как современное ее значение 1,5237 а. е. Эксцентриситет орбиты Марса по Кеплеру равен 0,0926, а современное его значение 0,0934.
      Уже из приведенных чисел видно, что Марс расположен от Солнца в полтора раза дальше Земли, и, значит, получает от Солнца в 2,3 (1,52^) раза меньше света и
      тепла. Расстояние Марса от Солнца составляет в среднем 228 млн. км, тогда как Земля отстоит от дневного светила на 150 млн. км (рис. 1).
      Благодаря большому эксцентриситету орбиты Марс может изменять свое расстояние от Солнца в довольно широких пределах. Чтобы найти, на сколько расстояние в ближайшей к Солнцу точке орбиты, перигелии, меньше среднего, надо помножить среднее расстояние на эксцентриситет. Получим:
      228 X 0,093 == 21 млн. км.
      На столько же дальше среднего наибольшее расстояние Марса от Солнца в самой далекой точке его орбиты (в афелии).
      Следовательно, кратчайшее расстояние Марса от Солнца равно 207 млн. км, а наибольшее-249 млн. км. Эти величины относятся как 1:1,2, а поток солнечного света и тепла на единицу поверхности Марса в перигелии и афелии как 1,44 : 1.
      Чтобы понять, как может изменяться положение Марса относительно Земли, рассмотрим основные конфигурации этой планеты (они справедливы и для других
      верхних планет, от Юпитера до Плутона).
      Пусть Земля при движении по орбите вокруг Солнца S находится в положении Т (рис. 2). На орбите Марса отметим четыре важных положения планеты: соединение К., когда планета находится . за Солнцем, на продолжении прямой TS, квадратуры Qi и 02, когда угол между направлениями на Солнце и планету (ZSTQl^ZSTQz) pa- I вен 90°, и противостояние О, когда планета нахо- \ дится снова на
      на 90" от Солнца. На самом деле это не так. Квадратуры замечательны в двух отношениях: во-первых, в это время скорость приближения планеты к Земле или удаления от нее максимальна, во-вторых, угол фазы планеты достигает в квадратурах наибольшего значения.
      Поясним эти два обстоятельства. Движение планеты относительно Земли по лучу зрения используется спектроскопистами для отделения с помощью эффекта Доплера спектральных линий планетного происхождения от так называемых теллурических линий, вызванных поглощением света газами земной атмосферы. Найдем, чему равна эта радиальная скорость (по лучу зрения) для внешней планеты. Пусть Земля (рис. 3) находится в
      нии прямой TS, но в направлении, противоположном Солнцу (отсюда и выражение "противостояние").
      Легко видеть, что именно в противостоянии планета расположена ближе всего к Земле, а в соединении расстояние между ними максимально. Поэтому эпоха соединения - самый неблагоприятный период для наблю^ дений Марса, а эпоха противостояния, наоборот, самый благоприятный. И не только благодаря близости планеты к Земле, но и потому, что в это время планета видна всю ночь, восходит с заходом Солнца и заходит
      с его восходом.
      Прежде чем перейти к более подробному рассмогрению условий видимости Марса во время противостояний, остановимся на значении квадратур. Обычно думают, что ничего особенного эти конфигурации планеты не представляют, за исключением того, что планета находится ,
      точке Т и движется по орбите со скоростью У( = = 30 км/сек, а Марс - в точке М и движется со средней скоростью Vm = 24 км/сек. Пусть векторы скоростей Vf и Vm образуют с лучом зрения МТ углы а. и р соответственно. Тогда очевидно, что радиальная скорость "Д будет равна разности проекций Vi и Vm на направление ТМ:
      Угол a=L-90°*), где L-угловое расстояние Марса от Солнца 5 (скорость Земли направлена по касательной, которая перпендикулярна к радиусу ST в точке касания Т). Угол р=90°-Р, где Р-угол фазы, т. е. угол между направлениями планета-Солнце и
      *) Или 90°-L, если Марс находится по другую сторону от точки Q.
      планета-Земля. Кроме того, из треугольника SMT по теореме синусов имеем
      где ri и /m-расстояния Земли и Марса от Солнца, Отсюда сразу видно, что угол фазы Р достигает наибольшего значения, когда L = 90°, т. е. во время квадратур. В это время Р == 41° (если Марс находится на среднем расстоянии) или Р == 47° (если Марс в перигелии). Фаза (или доля освещенного диска) Марса равна при этом 0,84. Мы можем заменить к и р на L и Р и преобразовать формулу (1) так:
      Величина в скобке (для средних значений Гт и Ущ) равна 14 км/сек. Очевидно, что при L == 90° Vr тоже достигает этого значения, которое является максимальным *).
      Обратимся теперь к противостояниям Марса. По условиям видимости планеты не все они равноценны по двум причинам. Во-первых, из-за эксцентриситета орбиты Марса его расстояние от Земли в момент противостояния может меняться от 56 до 100 млн. км. Во-вторых, склонение, а значит, и высота планеты над горизонтом различны для разных противостояний.
      Те противостояния, при которых расстояние до Марса не превышает 60 млн. км, принято называть великими. Очевидно, в период великих противостояний Марс должен быть вблизи перигелия. Если соединить перигелий орбиты Марса с Солнцем прямой линией, то она пересечет орбиту Земли в той точке, которую Земля проходит 29 августа. Поэтому даты великих противостояний Марса приходятся обычно на август или сентябрь (исключением был 1939 г., когда великое противостояние наступило 23 июля).
      В следующей таблице приведены даты великих противостояний за последние 100 лет и кратчайшие расстояния Марса от Земли в астрономических единицах и в миллионах километров.
      *) Впрочем, если Марс в эпоху квадратуры находится в афелии, его радиальная скорость может достигнуть 17 км/сек.
      Сразу видно, что великие противостояния следуют с интервалом в 15 или 17 лет. Чтобы понять существующую здесь закономерность, вспомним, что период обращения Марса вокруг Солнца равен 687 суткам. Синодический период планеты, т. е. интервал от одного противостояния до следующего, определяется по формуле
      где Р == 687 сут. - год Марса, Т == 365,25 сут. - год Земли. Из этой формулы находим 5 == 780 суткам, т. е. синодический период Марса равен 2 годам 50 суткам. Но это-только среднее значение. Из-за эксцентриситета орбиты Марса синодический период меняется в пределах от 764 до 811 суток, как можно видеть из следующей таблички последовательных противостояний Марса с 1956 по 1975 г.
      В табличке приведены также значения наименьшего расстояния Марса от Земли в эпоху противостояния и наибольшего видимого диаметра Марса в секундах дуги. Из последнего столбца видно, какие преимущества пред-' ставляют великие противостояния по сравнению с "обычными".
      Но великие противостояния имеют, с точки зрения условий наблюдений, и свои минусы, особенно для обсерваторий и наблюдателей средних широт северного полушария. В это время Марс имеет большое южное склонение и находится очень низко над горизонтом, наблюдать его неудобно. Так, во время великого проти-' востояния 10 августа 1971 г. склонение Марса было -22° и на широте +50° он даже в кульминации не поднимался выше 18 градусов над горизонтом! Наблюдения Марса в это время велись на южных обсерваториях Советского Союза, Европы, США, Японии и на обсерваториях южного полушария.
      С этой точки зрения "не великое" противостояние 24 октября 1973 г. для наблюдателей средних широт было более выгодно: хотя диск Марса был несколько меньше, чем в 1971 г. (21",6 против 24",9), зато склонение планеты было около +9°, и ее высота в кульминации на той же широте достигала 49 градусов.
      Ознакомившись с орбитой и условиями видимости Марса, обратимся к свойствам Марса как планеты: его размерам, массе, вращению.
      Экваториальный диаметр Марса равен, по новейшим определениям французского астронома О. Дольфюса, 6790 км, т. е. 0,53 земного. Полярный диаметр Марса несколько меньше экваториального из-за полярного сжатия. Разность экваториального и полярного радиусов Марса равна 1/191 егоэкваториальногорадиуса.УЗемли эта величина равна 1/298. Иначе говоря, Марс сплюснут у полюсов несколько сильнее, чем Земля*).
      *) Данные "Маринера-9-> позволили уточнить наши сведения о форме и размерах Марса. Фигура планеты близка к трехосному эллипсоиду, причем наибольший экваториальный диаметр уровенной поверхности (соответствующей у нас на Земле уровню мирового океана) равен 6788 км, наименьший - 6786 км, полярный диаметр 6753 км. Истинная поверхность Марса отличается от уровенной: для истинной поверхности эти три диаметра равны соотвегственно 6802, 6790 и 6745 км, т. е. сжатие истинной поверхности больше.
      Марс вращается вокруг своей оси почти так же, ках и Земля: его период вращения равен 24 час. 37 миг. 23 сек., что на 41 мин. 19 сек. больше периода вращепп;' Земли. Ось вращения наклонена к плоскости орбиты планеты на угол 65°, почти равный углу наклона земной оси (66°,5). Это значит, что смена дня и ночи, а также смена времен года на Марсе протекает почти так же, как на Земле. Там есть и тепловые пояса, подобные земным: тропический (широта тропиков +2У), два умеренных и два полярных (широта полярных кругов +65°).
      Но есть и отличия. Прежде всего из-за удаленности от Солнца климат Марса вообще суровее земного. Далее, год Марса (687 земных суток или 668 марсианских суток) почти вдвое длиннее земного, а значит, дольше длятся и сезоны. Наконец, нч-за эксцентриситета орбиты длительность и характер сезонов заметно отличаются в северном и ю'кпом полушариях планеты, как видно из следующей таблич';';:
      Таким образом, в северном полушарии планеты лето долгое, но прохладное, а зима короткая и мягкая (Марс в это время близок к перигелию), тогда как в южном полушарии лето короткое, но теплое, а зима долгая и суровая. Как все это выражается в привычных нам температурах, мы узнаем дальше.
      Масса Марса была довольно точно определена по движению его спутников Фобоса и Деймоса, а теперь уточнена по движению искусственных спутников серии "Маринер". Она равна 1:3098700 доле массы Солнца, или 0,107 массы Земли, или 6,42-10^ г. Отсюда средняя плотность Марса получается 3,89 г1см" (0,70 средней плотности Земли), ускорение силы тяжести на его
      поверхности на экваторе 372 см/сек^ (0,38 земного) и критическая скорость, достаточная для преодоления притяжения планеты, 5,0 км/сек (против 11,2 км/сек на Земле).
      Таковы общие характеристики Марса как планеты Как мы не раз еще сможем убедиться, они во многом определяют условия на Марсе: состояние его атмосферы климат, ветровой режим. Но расскажем обо всем по порядку.
      Спутники Марса
      II и 17 августа 1877 г. Асаф Холл на Вашингтонской обсерватории открыл два маленьких спутника МарсаФобос и Деймос. Размеры их дисков были не различимы ни в какой телескоп, а блеск в среднем противостоянии соответствовал 11,6 и 12,8 звездной величины. Это свидетельствовало об их весьма малых размерах. Оценить эти размеры можно было таким путем.
      Предположим, что отражательная способность спутников такая же, как и у самого Марса. Тогда отношение блеска планеты и спутника будет равно квадрату отношения их диаметров. Блеск Марса в среднем противостоянии равен -1,65 звездной величины, значит. Марс в 200000 раз ярче Фобоса и в 600000 раз ярче Деймоса. Отсюда следует, что диаметры обоих спутников меньше диаметра Марса в 450 и 770 раз соответственно, т. е. равны 15 и 9 км.
      В действительности, как показали фотографии "Маринера-9" в 1971 г., оба спутника больше. Фобос имеет размеры 27х20 км, Деймос 15х11 км. Недооценка размеров спутников получилась потому, что их поверхность оказалась темнее марсианской.
      Периоды обращения спутников вокруг планеты составляют 7 час. 39 мин. у Фобоса и 30 час. 21 мин. у Деймоса, их расстояния от центра планеты 9400 и 23 500 км. Орбиты почти круговые, их наклон к экватору Марса у Фобоса 1 градус, у Деймоса 2,7 градуса.
      Таким образом, Фобос совершает обращение вокруг планеты втрое быстрее, чем сам Марс вращается вокруг оси. За сутки Марса Фобос успевает совершить три полных оборота и пройти еще дугу в 78°. Для марсианского наблюдателя он восходит на западе и заходит на
      востоке. Между двумя последовательными верхними кульминациями Фобоса проходит II час. 07 мин.
      Совсем иначе движется по небу Деймос. Его период обращения больше периода вращения Марса, но ненамного. Поэтому он хотя и "нормально" восходит на востоке и заходит на западе, но движется по небу Марса крайне медленно. От одной верхней кульминации Деймоса до следующей проходит 130 часов-пять с лишним
      суток!
      Видимые диаметры обоих спутников для наблюдателя на поверхности планеты сравнительно невелики. Фобос в зените имеет видимый диаметр 16' (по большой оси), т. е. кажется ровно вдвое меньше нашей Луны на земном небе, а у горизонта II'. Деймос даже в зените имеет видимые размеры 2" X 3", т.е. в 10-15 раз меньше Луны, но все же его диск должен быть различим невооруженным глазом.
      В 1945 г. американский астроном Б. Шарплесс обнаружил вековое ускорение в движении Фобоса по орбите. Это означало, что Фобос, строго говоря, движется по очень пологой спирали, постепенно приближаясь к поверхности Марса. Если так будет продолжаться и дальше, то через 15 млн. лет-срок с космогонической точки зрения весьма небольшой (1/300 возраста Марса)-Фобос упадет на Марс.
      Однако только через 14 лет на это обратили внимание. К тому времени появились небесные тела, двигавшиеся точно таким же образом. Это были первые искусственные спутники Земли, запущенные в СССР и позднее в США. Торможение в земной атмосфере заставляло их снижаться, а приближение к центру Земли вызывало ускорение их движения.
      Известный советский астрофизик И. С. Шкловский попытался в 1959 г. подсчитать, не может ли торможение в самых верхних слоях атмосферы Марса (на высоте 6000 км) быть причиной векового ускорения Фобоса. Результат был неожиданным: это возможно только в том случае, если Фобос... полый. Тогда он, подобно воздушному шару, будет испытывать заметное сопротивление окружающей газовой среды. Однако эта гипотеза, наделавшая в свое время много шума, не подтвердилась. Фотографии "Маринера-9" показали, что Фобос и Деймос имеют вид громадных каменных глыб.
      Почти одновременно советским геофизиком Н. Н. Парийским была выдвинута другая гипотеза, объяснявшая особенности движения Фобоса приливным торможением Несмотря на свою маленькую массу (2-10'^ г), Фобос из-за близости к Марсу может вызывать довольно заметные приливы в его коре. Попробуем сравнить их с лунными приливами на Земле. Приливное ускорение пропорционально массе возмущающего тела и радиусу возмущаемого тела и обратно пропорционально кубу расстояния между их центрами. Составим отношение этих величин для системы Марс-Фобос (индекс 1) и Земля - Луна (индекс 2) :
      Итак, приливное ускорение, создаваемое Фобосом на Марсе, только в 100 раз меньше того, которое Луна создает на Земле. Если Луна заставляет земную кору дважды в сутки приподниматься и опускаться примерно на 50 см (вместе с горами, долинами, зданиями, людьми), то под действием Фобоса кора Марса будет испытывать поднятия на 5 мм - вполне заметную величину, и притом в два с лишним раза чаще.
      Приливная волна на Земле из-за трения и сил напряжения в земной коре не поспевает за Луной, а отстает от нее на угол приливного запаздывания, почти равный 90°. В случае Марса будет то же самое, но движение приливной волны из-за уже известных нам обстоятельств обращения Фобоса будет направлено с запада на восток, в сторону вращения Марса. Притяжение приливных горбов будет тормозить движение Фобоса, вызывая уже известный нам эффект векового ускорения.
      Были и другие объяснения этого явления (например, как полагают В. В. Радзиевский и В. П. Виноградова, его могло бы обусловить световое давление). Но вдруг появились сообщения, что никакого векового ускорения у Фобоса нет и проблема отпадает сама собой. В 1967 г. английский астроном Дж. Уилкинс подобрал такие параметры уравнений движения Фобоса, которые хорошо удовлетворяли наблюдениям за 1877-1929, а также за 1956 и 1967 гг. без гипотезы о вековом ускорении.
      В 1968-1969 гг. московский астроном С. Н. Вашковьяк разработала новую аналитическую теорию
      ния Фобоса и Деймоса, более полную, чем применявшаяся до тех пор теория Г. Струве. Ее результаты также не показали наличия векового ускорения, но свою теорию С. Н. Вашковьяк сравнивала с наблюдениями только за 1877-1926 гг.
      В 1972 г. американский астроном А. Т. Синклер построил наиболее полную теорию движения спутников Марса, основанную на обработке 3100 наблюдений их положений. Сперва Синклер получил вековое ускорение (правда, вдвое меньшее, чем Шарплесс), но потом, отбросив малонадежные, по его мнению, наблюдения 1877-1881 гг., пришел к выводу, что оно нереально.
      Тогда ленинградский астроном В. А. Шор с группой сотрудников предпринял обработку всех опубликованных наблюдений спутников Марса за 1877-1973 гг., более 5000 измерений. И... вековое ускорение Фобоса было ^вновь обнаружено. Его величина составляла 75% вели^чины, найденной Шарплессом, и 150% величины, полученной Синклером. Отбрасывание тех или иных наблюдений не изменяет этого вывода. Данные "Маринера-9" ^тоже согласуются с полученным результатом. -1 Интересно, что у Деймоса никто из перечисленных исследователей не обнаружил никакого векового ускорения. Если верна приливная гипотеза, то это легко объяснимо. Нетрудно подсчитать, что приливное ускорение от Деймоса в 120 раз меньше, чем от Фобоса, к тому же приливная волна от Деймоса движется по поверхности Марса в 12 раз медленнее.
      Неужели через 20-25 миллионов лет Фобос упадет на Марс? Ответ на этот вопрос дадут наблюдения ближайших 50 лет.
      Что же нам известно о физических свойствах спутников Марса? Поверхность их оказалась очень темной, их альбедо равно' 0,05, как у лунных "морей". Она вся испещрена кратерами ударного (метеоритного) происхождения, причем наибольший кратер на Фобосе имеет поперечник 5 км. Плотность кратеров на единицу поверхности спутников заставляет считать спутники весьма древними небесными телами. А малый наклон орбит к экватору Марса и их почти круговая форма противоречат гипотезе о происхождении спутников Марса путем захвата, хотя такой взгляд еще кое-кем высказывается.
      Наблюдения "Маринера-9" показали, что оба спутни ка обращены к Марсу одной стороной (как Луна к 3. ле). Для установления такого вращения достаточно це. сятков миллионов лет для Деймоса и только сотен ты^яч лет для Фобоса ввиду его близости к Марсу.
      Непосредственные фотографии, фотоэлектрические и поляризационные наблюдения указывают на то что наружный слой поверхности обоих спутников - мелко раздробленная пыль, слой которой имеет толщину около 1 мм. Ее состав, по-видимому, базальтовый со значительной примесью карбонатов. Инфракрасные наблюдения свидетельствуют о крайне низкой теплопроводности наружного покрова, что подтверждает гипотезу о пылевом слое.
      ЧАСТЬ 1
      ИССЛЕДОВАНИЕ МАРСА КЛАССИЧЕСКИМИ МЕТОДАМИ АСТРОНОМИИ
      Марс в телескоп
      После изобретения телескопа астрономы сразу же попытались наблюдать и зарисовывать поверхность Марса. Один из первых рисунков этой планеты принадлежит голландскому физику и астроному Христиану Гюйгенсу; он сделан в 1659 г. В 60-70-е годы XVII в. наблюдениями Марса занимался французский астроном Жан Доминик Кассини, впервые определивший период вращения Марса по перемещению пятен на его диске.
      За два столетия, прошедшие от наблюдений Кассини до работ итальянского астронома-наблюдателя Джованни Скиапарелли, кто только не наблюдал и не зарисовывал Марс! Среди них был и творец звездной астрономии Вильям Гершель, и наблюдатель планет Иероним Шретер, и один из основоположников астроспектроскопии Анджело Секки, На основе этих наблюдений были составлены первые карты Марса и установлено, что на диске планеты можно наблюдать три типа областей: обширные желтовато-оранжевые пространства, получившие название материков, темные серовато-голубые пятна, условно названные морями, и ярко-белые пятна у полюсов, получившие название полярных шапок (рис. 4).
      Еще В. Гершель в 1784 г. обратил внимание на периодические изменения размеров полярных шапок, совпадавшие со сменой сезонов на планете. Гершель сделал вывод, что весной и летом полярные шапки тают, словно они состоят из снега или льда. Белый цвет шапок создавал аналогию с земными снегами полярных стран. Для той эпохи этого было достаточно для такого вывода. Оранжевый цвет материков наводил на сравнение с земными пустынями. Что касается морей, то первое время астрономы допускали, что это настоящие моря,
      наполненные водой. Мы скоро убедимся, насколько опас^> ны в науке подобные чисчо внешние аналогии.
      Чем больше накапливалось зарисовок Марса тем точнее становились его карты. Различные астронДмц предлагали разные системы названий марсианских оЯ& ластей. В науке укрепилась система названий, предл^йЙ жепная итальянским астрономом Джованни СкиапаммИ ли, работавшим в последней четверти XIX в. "дА
      Скиапарелли выделил следующие типы темных деталей на Марсе: собственно моря, обозначавшиеся латинским термином Маге, заливы (Sinus), озера (Lacus), болота (Palus), низины (Depressio), мысы (Promonto- rium), проливы (Fretum), источники (Fons) и области (Regio). Так появились на карте Марса столь привычные для каждого астронома-планетчика и необычные для широкого круга людей названия, как Solis Lacus (Озеро Солнца), Mare Sirenum (Море Сирен), Sinus Meridiani (Срединный залив), Deucalionis Regio (область
      лиона), Pandorae Fretum (пролив Пандоры), Oxia Palus (Кислое болото) и другие.
      Если наблюдать Марс из вечера в вечер в эпоху великого противостояния, когда к Земле наклонено южное полушарие планеты, то из-за разности периодов вращения Марса и Земли на 40 минут обращенные к Земле области будут постепенно сдвигаться в сторону, обратную направлению вращения планеты. И если в первый вечер перед нами был знаменитый южный пояс морей: Mare Thyrrenum, Mare Cirnmerium, Mare Sirenum (рис. 5), то дальше перед нами постепенно пройдут светлые области Memnonia и Thaumasia, окружающие продолговатое пятно Solis Lacus, затем большое Маге Erythraeum с двумя заливами у экватора: Aurorae Sinus и Margaritifer Sinus; в это время на севере будет видно сероватое Mare Acidalium. Дальше мы сможем увидеть похожий на двойной клюв Sinus Meridiani, начало отсчета марсианских долгот, и тянущийся от него влево Sinus Sabaeus с примыкающей к нему с севера светлой областью Arabia. На юг от Sinus Sabaeus и Pandorae Fretum простирается большая светлая область Noachis. Темный рукав Hellespontus отделяет ее от соседней с востока (для наблюдателя в телескоп - слева) светлой области Hellas (Эллады), о которой мы еще будем говорить. За Sinus Sabaeus простирается Mare Serpentis с отходящим к северу темным треугольным выступом Syrtis Major. Левее его в 50-е годы вдруг образовалось новое темное пятно Nodus Laocoontis (Лаокоонов Узел), которое через несколько лет так же неожиданно исчезло. Еще дальше идут светлые области Aethiopis, Elysium, а к югу от экватора-уже знакомые нам Mare Thyrre- num и Mare Cirnmerium. Круг замкнулся, но на полный обзор Марса у нас ушло 40 суток: таков синодический период вращения Марса относительно Земли*).
      Близость периодов вращения Земли и Марса приводит к любопытным следствиям. Чтобы наблюдать и фотографировать с Земли всю поверхность Марса в течение одних суток, нужны объединенные усилия астрономов стран Европы, Азии и Америки, поскольку ночь
      *) За одни сутки из-за разности периодов вращения Марса и Земли Марс "недоворачипается" на 9 градусов. Чтобы он "недовернулся" на 360°, и требуется 40 суток.
      (и видимость Марса) для них наступает в физически разные моменты. Если бы периоды вращения обеих планет были в точности равны, наблюдатель, расположенный, например, в Москве, был бы обречен наблюдать всегда одно и то же полушарие Марса (как мы видим всегда одну сторону Луны), а чтобы полюбоваться на другое полушарие, ему пришлось бы ехать в Америку или Японию.
      За последние годы необходимость международной кооперации при наблюдениях этой планеты приобретает все большее значение. Поэтому еще в 1969 г. был организован Международный планетный патруль в составе восьми обсерваторий, расположенных сравнительно равномерно по долготе и не очень далеко от экватора.

  • Страницы:
    1, 2, 3, 4, 5, 6