Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (АТ)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (АТ) - Чтение (стр. 7)
Автор: БСЭ
Жанр: Энциклопедии

 

 


        Распространение звука в свободной атмосфере имеет ряд особенностей. Звуковые волны благодаря теплопроводности и вязкости воздуха поглощаются тем сильнее, чем выше частота звука и чем меньше плотность атмосферы. Поэтому резкие вблизи звуки выстрелов или взрывов на больших расстояниях становятся глухими. Неслышимые же звуки очень низких частот (т. н. инфразвуковых) с периодами от нескольких секдо нескольких минзатухают мало и могут распространяться на тысячи кми даже огибать несколько раз земной шар. Это даёт возможность, например, обнаруживать ядерные взрывы, являющиеся мощным источником таких волн.
        Важные задачи А. а. связаны с явлениями, возникающими при распространении звука в атмосфере, которая представляет собой с точки зрения акустики движущуюся неоднородную среду. Температура и плотность атмосферы уменьшаются с увеличением высоты; на больших высотах температура снова возрастает. На эти регулярные неоднородности накладываются зависящие от метеорологических условий изменения значений температуры и ветра, а также их случайные турбулентные пульсации различных масштабов. Т. к. скорость ветра определяется температурой воздуха и звук «сносится» ветром, то все перечисленные неоднородности сильно влияют на распространение звука. Возникает искривление звукового луча — ,в результате чего наклонный звуковой луч может вернуться к земной поверхности, образуя акустические зоны слышимости и ,происходит рассеяние и ослабление звука на турбулентных неоднородностях, сильное поглощение звука на больших высотах и т. д.
        Сложную обратную задачу приходится решать при акустическом .Распределение температуры и ветра на больших высотах определяют по измерениям времени и направления прихода звуковых волн от наземных взрывов или взрывов бомб, сбрасываемых с ракеты. При исследовании турбулентности определяют температуру и скорость ветра, измеряя время распространения звука на небольших расстояниях; для получения необходимой точности пользуются ультразвуковыми частотами.
        Большое значение получила проблема распространения промышленных шумов, в особенности ударных волн, возникающих при движении сверхзвуковых реактивных самолётов. Если атмосферные условия благоприятствуют фокусировке этих волн, то у земной поверхности давления могут достичь значений, опасных для сооружений и здоровья людей.
        В атмосфере наблюдаются различные звуки естественного происхождения. Длительные раскаты грома происходят вследствие большой длины грозового разряда, а также потому, что из-за рефракции звуковая волна распространяется по различным путям и приходит с различными запаздываниями. Некоторые геофизические явления — полярные сияния, магнитные бури, мощные землетрясения, ураганы, морские волнения — являются источниками звуковых и особенно инфразвуковых волн. Их исследование важно не только для геофизики, но, например, для заблаговременного штормового оповещения. Разнообразные слышимые шумы вызываются или срывом вихрей с различных препятствий (свист ветра) или колебаниями каких-либо предметов в потоке воздуха (гудение проводов, шелест листьев и т. п.).
        Лит.:Красильников В. А., Звуковые и ультразвуковые волны в воздухе, воде и твердых телах, 3 изд., М., 1960; Блохинцев Д. И., Акустика однородной движущейся среды, М.—Л., 1946.
         В. М. Бовшеверов.

Атмосферная оптика

       Атмосфе'рная о'птика,раздел физики атмосферы, в котором изучаются оптические явления, возникающие при прохождении света в атмосфере. Сюда относятся не только такие красочные явления, как зори, радуги, изменения цвета неба, а и менее заметные, но очень важные для практики явления, как рассеяние и излучение атмосферой видимой и невидимой радиации, поляризация небесного света, видимость предметов и т.д. А. о. составляет часть физической оптики; она тесно переплетается с оптикой коллоидов и ,планетных атмосфер, моря, с радиационной и др. Важные для А. о. результаты были получены при решении проблем физической химии, астрофизики, океанологии, техники, а методы и результаты А. о. часто находят применение в этих науках.
        Изучение оптических свойств воздуха, моря и суши составляет прямые задачи А. о. Обратные задачи А. о. — разработка оптических методов зондирования, т. е. определения по измеренным оптическим свойствам воздуха, моря и суши других их физических характеристик.
        Оптические явления в нижних и верхних слоях атмосферы (слой озона и выше) различны. В верхних слоях под влиянием солнечного излучения происходят главным образом фотохимические реакции. Возникающие при этом возбуждённые частицы высвечивают запасённую энергию (полярные сияния, свечение ночного неба и др.). Изучением этих явлений занимается .В данной статье они не рассматриваются.
        Интерес к оптическим явлениям в атмосфере возник очень давно. Цвет неба и облаков, зори, ложные солнца и т. д. с давних пор считались предвестниками погоды. Таких примет довольно много и одно время считалось даже, что их изучение и есть главная задача А. о. Этой точки зрения придерживался русский геофизик П. И. Броунов (30-е гг. 20 в.). Однако более подробные исследования показали, что хотя между оптическими и другими физическими явлениями в атмосфере связь несомненно существует, но часто она бывает очень сложной и неоднозначной; оптические признаки погоды иногда противоречат друг другу. Постепенно стало ясно, что найти связь между оптическими явлениями и погодой можно, лишь изучая природу оптических явлений и одновременно проникая в механизм физических явлений, вызывающих изменения погоды.
        Первые попытки объяснить синий цвет неба относятся к 16 в. Леонардо да Винчи объяснял синеву небесного свода тем, что белый воздух на тёмном фоне мирового пространства кажется синим. Л. Эйлер считал (1762), что «сами частицы воздуха имеют синеватый оттенок и в общей массе создают интенсивную синеву». В начале 18 в. И. Ньютон объяснял цвет неба интерференционным отражением солнечного света от мельчайших капель воды, всегда взвешенных в воздухе. В 1809 французский физик Д. Араго открыл, что свет неба сильно поляризован (см. ) .
        Первое правильное объяснение синего цвета неба дал английский физик Рэлей (Дж. У. Стрётт) (1871, 1881). По теории Рэлея цветные лучи, образующие солнечный спектр, рассеиваются молекулами воздуха пропорционально l -4(где l — длина световой волны). Синие лучи рассеиваются, примерно, в 16 раз сильнее, чем красные. Поэтому цвет неба (рассеянный солнечный свет) — синий, а цвет Солнца (прямой солнечный свет), когда оно низко над горизонтом и лучи его проходят большой путь в атмосфере, — красный. При этом рассеянный свет должен быть сильно поляризован, а под углом 90° от направления на Солнце поляризация должна быть полной.
        Измерения яркости, цвета и поляризации света неба подтвердили теорию Рэлея. Но в 1907 русский физик Л. И. Мандельштам показал, что если тело, в том числе и воздух, строго однородно, то лучи, рассеянные отдельными молекулами, должны в результате взаимной интерференции гасить друг друга так, что никакого рассеяния вообще наблюдаться не будет. В действительности из-за хаотического теплового движения в среде всегда возникают флуктуации плотности (т. е. случайно расположенные области сгущений и разрежений), на которых и происходит рассеяние. Строгая теория флуктуационного рассеяния, разработанная польским физиком М. Смолуховским (1908) и А. Эйнштейном (1910), привела к тем же формулам, которые были ранее получены в молекулярной теории Рэлея. Однако все эти работы не учитывали запылённости атмосферы. Воздух, даже самый чистый, — высоко в горах, в Арктике и Антарктике — всегда засорён органической и минеральной пылью, частицами дыма, капельками воды или растворов. Эти частицы очень малы (радиус около 0,1 нм) ,их масса, а следовательно, и вес ничтожны, поэтому они так медленно падают на Землю, что малейший ток воздуха снова вздымает их вверх. Т. к. воздух непрерывно перемешивается, то в атмосфере всегда парит как бы сеть из мельчайших пылинок и капель, особенно густая в нижних приземных слоях. Это атмосферный ,который и является главной причиной мутности воздуха. Он уменьшает дальность видимости в реальной атмосфере, по сравнению с идеальной, приблизительно в 20 раз. Кроме аэрозоля, большую роль в оптических явлениях в атмосфере играют водяной пар, углекислый газ и озон, хотя они составляют всего несколько % от объёма газов, из которых состоит воздушная смесь. Только эти газы поглощают солнечное и земное излучение и сами излучают радиацию.
        В рассеянии света в атмосфере решающее значение имеет аэрозоль. Немецкий физик Г. Ми (1908) построил теорию рассеяния света частицей произвольного размера, которой широко пользуются в А. о. Эта теория была существенно развита н дополнена советскими учёными В. В. Шулейкиным (1924), В. А. Фоком (1946), К. С. Шифриным (1951) и голландским учёным ван Хюлстом (1957). Расчёты показывают, что характер рассеяния зависит от отношения радиуса частицы a к длине волны l и от вещества частицы. Малые частицы (a/l “ 1) ведут себя так же, как молекулы в теории Рэлея, но чем больше частицы, тем слабее зависимость рассеяния от длины волны. Большие частицы (a/l “ 1) рассеивают свет нейтрально — все волны одинаково. Это, в частности, относится к каплям облаков, радиусы которых в 10—20 раз больше длины волны видимого света. Именно поэтому облака имеют белый цвет. По этой же причине небо становится белесоватым, если воздух пыльный или содержит капельки воды. В исследование яркости и поляризации неба большой вклад внесли советские учёные В. Г. Фесенков, И. И. Тихановский, Е. В. Пясковская-Фесенкова, а в исследование прозрачности облаков, туманов, нижних слоев атмосферы — А. А. Лебедев, И. А. Хвостиков, С. Ф. Родионов, американские учёные Д. Стреттон и Г. Хаутон, французские учёные Э. и А. Васей, Ж. Брикар.
        Наряду с экспериментальными работами создавались также методы расчёта распределения яркости и поляризации по небу, для чего необходимо учитывать многократность рассеяния света и отражения от земной поверхности. Для этого случая русским физиком О. Д. Хвольсоном (1890) было предложено уравнение переноса излучения. Для безоблачного неба влияние многократного рассеяния не очень велико, но для облаков, которые представляют собой сильно мутные среды, это — основной фактор, без которого нельзя правильно рассчитать прозрачность облаков, отражение и световой режим внутри них. Большой вклад в разработку методов решения уравнения переноса внесли советские учёные В. А. Амбарцумян (1941—43), В. В. Соболев (1956), Е. С. Кузнецов (1943—45) и индийский учёный С. Чандрасекар (1950).
        Видимость предметов обусловлена прежде всего прозрачностью воздуха, а также их отражательными свойствами. Отражение диффузно, т. е. рассеяно во все стороны (за исключением отражения от поверхности спокойной воды) и для разных поверхностей происходит по-разному, в результате чего (для несамосветящихся тел) возникает яркостный контраст предмета с фоном. Если контраст больше некоторого порогового значения, то предмет виден; если меньше, то предмет теряется на общем фоне. Дальность видимости предмета зависит от прозрачности воздуха и от освещённости (в сумерки и днём порог различения неодинаков). Видимость (прозрачность атмосферы) входит в число основных метеорологических элементов, наблюдения над которыми ведут метеорологические станции. Исследование условий, влияющих на горизонтальную и наклонную видимость (на фоне неба или Земли) — важная прикладная задача А. о. В её решении значительные результаты получили советские учёные В. В. Шаронов, Н. Г. Болдырев, В. А. Берёзкин, В. А. Фаас, немецкий учёный Х. Кошмидер, канадский учёный Д. Мидлтон.
        Большое значение имеет изучение условий распространения в атмосфере невидимых инфракрасных волн длиной 3— 50 мкм,которые обусловливают лучистую передачу тепла (механизм её состоит в поглощении и последующем переизлучении). Очень важны прямые измерения в свободной атмосфере, которые могут быть выполнены с самолётов или с искусственных спутников Земли (ИСЗ). В исследовании лучистой теплопередачи существенные результаты были получены советскими учёными А. И. Лебединским, В. Г. Кастровым, К. Я. Кондратьевым, Б. С. Непорентом, Е. М. Фейгельсоном и американскими — Д. Хоуардом и Р. Гуди.
        При постановке обратных задач А. о. возникают две трудности: во-первых, нужно установить, что в оптической информации содержатся нужные данные, и, во-вторых, — указать способ их извлечения и необходимую точность измерений. В. Г. Фесенков ещё в 1923 показал, что по изменению яркости сумеречного неба можно судить о строении атмосферы на высотах более 30 км.Через 30 лет сведения о строении стратосферы и ионосферы, полученные непосредственно с помощью ракет, подтвердили данные сумеречного метода. В развитие сумеречного метода внесли значительный вклад советские учёные Г. В. Розенберг, Н. М. Штауде. Удалось разработать несколько методов, позволяющих исследовать строение мутных сред по особенностям их светорассеяния, которые нашли применение не только в геофизике. Наибольший интерес вызывает разработка методов зондирования атмосферы с ИСЗ для определения температуры земной поверхности или облаков по инфракрасному излучению, приходящему на спутник. Исследуется также способ определения вертикальных профилей температуры и влажности по характеру приходящего излучения. В разработке этого метода важные результаты получены советским учёным М. С. Малкевичем, американским — Л. Капланом и японским — Г. Ямамото.
        Работу по развитию и согласованию исследований в области А. о. проводит Академия наук СССР совместно с Главным управлением гидрометеорологической службы СССР.
        Лит.:Броунов П. И., Атмосферная оптика, М., 1924; Шифрин К. С., Рассеяние света в мутной среде, М.— Л., 1951; Пясковская-Фесенкова Е. В., Исследование рассеяния света в земной атмосфере, М., 1957; Розенберг Г. В., Сумерки, М., 1963; Кондратьев К. Я., Актинометрия, Л., 1965.
         К. С. Шифрин.

Атмосферное давление

       Атмосфе'рное давле'ние,гидростатическое давление, оказываемое атмосферой на все находящиеся в ней предметы. А. д. — существенная характеристика состояния атмосферы; в каждой точке атмосферы оно определяется весом вышележащего воздуха. С высотой А. д. убывает; зависимость А. д. от высоты выражается .Измеряется А. д. .А. д. выражают в ( мбар) ,в ньютонах на м 2( н/м 2) или высотой столба ртути в барометре в мм,приведённой к 0°С и нормальной (на уровне моря и широте 45°) величине ускорения силы тяжести.
        За нормальное А. д. принимают 760 мм рт. ст.=1013,25 мбар =101325 н/м 2На высоте 5 кмА. д. равно приблизительно половине А. д. у земной поверхности.
        На земной поверхности А. д. изменяется от места к месту и во времени. Особенно важны непериодические изменения А. д., связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления — и относительно быстро перемещающихся огромных вихрей — ,в которых господствует пониженное давление. Отмеченные до сих пор крайние значения А. д. (на уровне моря): 808,7 и 684,0 мм рт. см.Однако, несмотря на большую изменчивость, распределение средних месячных значений А. д. на поверхности земного шара каждый год примерно одно и то же. Среднегодовое А. д. понижено у экватора и имеет минимум под 10° с. ш. Далее А. д. повышается и достигает максимума под 30—35° северной и южной широты; затем А. д. снова понижается, достигая минимума под 60—65°, а к полюсам опять повышается. На это широтное распределение А. д. существенное влияние оказывает время года и характер распределения материков и океанов. Над холодными материками зимой возникают области высокого А. д. Таким образом, широтное распределение А. д. нарушается, и поле давления распадается на ряд областей высокого и низкого давлений, которые называются .С высотой горизонтальное распределение давления становится более простым, приближаясь к широтному. Начиная с высоты около 5 кмА. д. на всём земном шаре понижается от экватора к полюсам.
        В суточном ходе А. д. обнаруживаются 2 максимума: в 9—10 чи 21—22 ч,и 2 минимума: в 3—4 чи 15—16 ч.Особенно правильный суточный ход оно имеет в тропических странах, где дневное колебание достигает 2,4 мм рт. ст.,а ночное — 1,6 мм рт. см.С увеличением широты амплитуда изменения А. д. уменьшается, но вместе с тем становятся более сильными непериодические изменения А. д.
        Лит.:Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958, гл. V; Бургесс Э., К границам пространства, пер. с англ., М., 1957.

Атмосферное электричество

       Атмосфе'рное электри'чество,
        1) совокупность электрических явлений и процессов в ,
        2) раздел физики атмосферы, изучающий электрические явления в атмосфере и её электрические свойства. При исследовании А. э. изучают электрическое поле в атмосфере, её и проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое др. Все проявления А. э. тесно связаны между собой и на их развитие сильно влияют метеорологические факторы — облака, осадки, метели и т. п. К области А. э. обычно относят процессы, происходящие в и .
        Начало А. э. как науке было положено в 18 в. американским учёным Б. Франклином, экспериментально установившим электрическую природу молнии, и русским учёным М. В. Ломоносовым — автором первой гипотезы, объясняющей электризацию грозовых облаков. В 20 в. были открыты проводящие слои атмосферы, лежащие на высоте более 60—100 км( , ) ,установлена электрическая природа и обнаружен ряд других явлений, изучению которых посвящены соответствующие науки, выделившиеся из А. э. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами. Две основные современные теории А. э. были созданы английским учёным Ч. Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, — поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.
        А. э. данного района зависит от глобальных и локальных факторов. Районы, где отсутствуют скопления и источники сильной ионизации, рассматриваются как зоны «хорошей», или «ненарушенной» погоды, здесь преобладают глобальные факторы. В зонах «нарушенной» погоды (в районах гроз, пыльных бурь, осадков и др.) преобладают локальные факторы.
        Электрическое поле атмосферы. В тропосфере все облака и осадки, туманы, пыль обычно электрически заряжены; даже в чистой атмосфере постоянно существует электрическое поле. Исследования в зонах «хорошей» погоды, начатые в 19 в., показали, что у земной поверхности существует стационарное электрическое поле с напряжённостью Е,в среднем равной около 130 в/м.Земля при этом имеет отрицательный заряд, равный около 3 10 5 к,а атмосфера в целом заряжена положительно. Однако при осадках и особенно грозах, метелях, пылевых бурях и т. п. напряжённость поля может резко менять направление и величину, достигая иногда 1000 в/м.Наибольшие значения Еимеет в средних широтах, а к полюсам и экватору убывает. В зонах «хорошей» погоды Е свысотой в целом уменьшается, например над океанами. Вблизи земной поверхности, в т. н. слое перемешивания толщиной 300—3000 м,где скапливаются аэрозоли, Еможет с высотой возрастать ( рис. 1 ). Выше слоя перемешивания Еубывает с высотой по экспоненциальному закону и на высоте 10 кмне превышает несколько в/м.Это убывание Есвязано с тем, что в атмосфере содержатся положительные объёмные заряды, плотность которых также быстро убывает с высотой.
        Разность потенциалов между Землёй и ионосферой составляет 200—250 кв.
        Напряжённость электрического поля Еменяется во времени. Наряду с локальными суточными и годовыми вариациями Еотмечаются синхронные для всех пунктов суточные (см. кривые 1 и 2, рис. 2 ) и годовые вариации Е —т.н. унитарные вариации. Унитарные вариации связаны с изменением электрического заряда Земли в целом, локальные — с изменениями величины и распределения по высоте объёмных электрических зарядов в атмосфере в данном районе.
        Электрическая проводимость атмосферы. Электрическое состояние атмосферы в значительной степени определяется её электрической проводимостью l, которая создаётся ионами, находящимися в атмосфере. Наличие ионов в атмосфере и является причиной потери заряда изолированным заряженным телом при соприкосновении с воздухом (явление, открытое в конце 18 в. французским физиком Ш. Кулоном). Электрическая проводимость l зависит от количества ионов, содержащихся в единице объёма (их концентрации), и их подвижности. Основной вклад в l вносят лёгкие ионы, обладающие наибольшей подвижностью u> 10 -5 м 2сек -1в -1.
        Электрическая проводимость атмосферы очень мала и может сравниться с проводимостью хороших изоляторов. У земной поверхности в среднем l= (1 - 2)·10 -18 ом -1м -1и увеличивается с высотой примерно по экспоненциальному закону; на высоте около 30 км lдостигает значений, почти в 150 раз больших, чем у земной поверхности. Выше проводимость увеличивается ещё более, причём особенно резко с высот, до которых проникают ионизующие излучения Солнца и где начинается образование ионосферы, проводимость которой приблизительно в 10 12раз больше, чем в атмосфере вблизи земной поверхности.
        Основные ионизаторы атмосферы: 1) космические лучи, действующие во всей толще атмосферы; 2) излучение радиоактивных веществ, находящихся в Земле и воздухе; 3) ультрафиолетовое и корпускулярное излучения Солнца, ионизующее действие которых заметно проявляется на высотах более 50—60 км.Концентрация легких; ионов возрастает с увеличением интенсивности ионизации и уменьшением концентрации частиц в атмосфере, поэтому концентрация лёгких ионов растет с высотой. Этот факт в сочетании с увеличением подвижности ионов при уменьшении плотности воздуха объясняет характер изменения lи Ес изменением высоты.
        Электрический ток в атмосфере. Движение ионов под действием сил электрического поля создаёт в атмосфере вертикальный ток проводимости in = El,со средней плотностью, равной около (2—3)·10 -12 а/м 2.Т. о., в зонах «хорошей» погоды сила тока на всю поверхность Земли составляет около 1800 а.Время, в течение которого заряд Земли за счёт токов проводимости атмосферы уменьшился бы до 1/ е» 0,37 от своего первоначального значения, равно ~ 500 сек.Т. к. заряд Земли в среднем не меняется, то очевидно, что существуют «генераторы» А. э., заряжающие Землю. Помимо токов проводимости, в атмосфере текут значительные электрические диффузионные и конвективные токи.
        «Генераторы» атмосферного электричества. «Генераторами» А. э. в зонах нарушенной погоды являются пылевые бури и извержения вулканов, метели и разбрызгивание воды прибоем и водопадами, облака и осадки, пар и дым промышленных источников и т. д. При почти всех перечисленных явлениях электризация может проявляться весьма бурно: извержение вулканов, песчаные бури и даже метели приводят иногда к образованию ,всё же наибольший вклад в электризацию атмосферы вносят облака и осадки.
        По мере укрупнения частиц облака, увеличения его толщины, усиления осадков из него растет его электризация. Так, в слоистых и слоисто-кучевых облаках плотность объёмных зарядов r » 3 10 -12 к/км 3,что приблизительно в 10 раз превышает их плотность в чистой атмосфере, а в грозовых облаках r доходит до 3·10 -8 к/м 3.Облака могут быть заряжены положительно в верхней части и отрицательно в нижней, но могут иметь и противоположную полярность, а также преимущественный заряд одного знака. Плотность тока осадков на Землю из слоисто-дождевых облаков i oc= 10 -12 а/м 2,в то время как из грозовых i oc= 10 -9а/м 2.Полная сила тока, текущего на Землю от одного грозового облака, в средних широтах равна около —(0,01—0,1) а,а ближе к экватору до —(0,5—1,0) а.Сила токов, текущих в самих этих облаках, в 10—100 раз больше силы токов, притекающих к Земле. Т. о., в электрическом отношении подобна короткозамкнутому генератору.
        При высоких значениях электрического поля у земной поверхности порядка 500—1000 в/мначинается электрический разряд с острых вытянутых предметов (травы, деревьев, мачт, труб и т.д.), который иногда становится видимым (т. н. огни св. Эльма, особенно яркие в горах и на море, см. ) .Возникающие при метелях, ливнях и особенно грозах токи коронирования способствуют обмену зарядами между Землёй и атмосферой.
        Т. о., электрическое поле Земли и ток Земля — атмосфера в зонах хорошей погоды поддерживаются процессами в зонах нарушенной погоды. На земном шаре одновременно существует около 1800 гроз (см. кривую 3, рис. 2 ); суммарная сила тока от них, заряжающего Землю отрицательным зарядом, доходит до 1000 а.Облака слоистых форм, хотя и менее активные, чем грозовые, но зато покрывающие около половины земной поверхности, также вносят существенный вклад в поддержание электрического поля Земли. Исследования А. э. позволяют выяснить природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрических сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.
        Лит.:Френкель Я. И., Теория явлений атмосферного электричества, Л.—М. 1949; Тверской П. Н., Атмосферное электричество, Л., 1949; Имянитов И. М., Приборы и методы для изучения электричества атмосферы, М., 1957; Имянитов И. М. и Шифрин К. С., Современное состояние исследований атмосферного электричества, «Успехи физических наук», 1962, т. 76, в. 4, с. 593; Имянитов И. М. и Чубарина Е. В., Электричество свободной атмосферы, Л., 1965.
         И. М. Имянитов.
      Рис. 2. Суточный ход унитарной вариации напряжённости электрич. поля Е: 1 — над океанами; 2 — в полярных областях; 3 — изменение площади S, занятой грозами, в течение суток.
      Рис. 1. Изменение напряжённости электрич. поля Ес высотой Н. 1 — Ленинград; 2 — Киев: 3 — Ташкент.

Атмосферные помехи радиоприёму

       Атмосфе'рные поме'хи радиоприёму, от электрических процессов, непрерывно происходящих в атмосфере Земли. Каждое нерегулярное изменение (разряд и др.) атмосферного электричества вызывает излучение электромагнитных волн всевозможной длины, действие которых на антенну радиоприёмника проявляется на его выходе в виде шумов и тресков (громкоговоритель), штрихов или чёрточек (кинескоп) и др. Уровень принятых антенной А. п. р. зависит от расстояния и условий (в данное время дня и года) между источником их возникновения и местом приёма. Наиболее мешают А. п. р. на длинных и средних волнах радиовещательного диапазона; с переходом на короткие волны помехи резко ослабевают. Особенно сильные А. п. р. создают грозовые разряды. В СССР наиболее сильный грозовой очаг расположен на Ю.-В. страны. Для ослабления действия А. п. р. применяют направленные антенны, когда направление на принимаемую радиостанцию отлично от направления на источник помех, и специальные схемы радиоприёмников.

Атмосферный волновод

       Атмосфе'рный волново'д,слой воздуха, непосредственно примыкающий к поверхности Земли или приподнятый над ней, который отклоняет распространяющиеся в нём радиоволны к поверхности Земли. При определённых метеорологических условиях, когда температура убывает с высотой медленнее, а влажность воздуха быстрее, чем при нормальных условиях, волна, вышедшая под небольшим углом к горизонту, на некоторой высоте испытывает полное отражение, отклоняется обратно к земной поверхности и отражается от неё. Этот процесс может повторяться многократно, в результате чего радиоволны распространяются вдоль поверхности Земли на большие расстояния без заметного ослабления ( рис. ). Такой способ распространения радиоволн в атмосфере называется волноводным, он напоминает распространение радиоволн в .В А. в. могут распространяться волны, для которых длина волны l меньше некоторого критического значения l кр(обычно l крЈ 50—100 V), т. е. дециметровые, сантиметровые и более короткие волны (подробнее см. ) .
         М. Б. Виноградова.
      Атмосферный волновод, в котором радиоволны могут распространяться на большие расстояния вдоль поверхности Земли.

Атмосферостойкость полимерных материалов

       Атмосферосто'йкость полиме'рных материа'лов,способность полимерных материалов выдерживать действие различных атмосферных агентов (солнечной радиации, тепла, кислорода воздуха, влаги, промышленных газов и т. д.) без значительного изменения внешнего вида и эксплуатационных свойств (механических, диэлектрических и др.). Устойчивость различных видов полимерных материалов к действию отдельных атмосферных агентов неодинакова.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14