Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (ГИ)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ГИ) - Чтение (стр. 13)
Автор: БСЭ
Жанр: Энциклопедии

 

 


По окончании излучения вибраторы подключаются к гетеродинному усилителю для приёма и усиления отражённых от объектов импульсных акустических сигналов. Затем сигналы поступают на индикаторные приборы: рекордер, электродинамический громкоговоритель, телефоны, электроннолучевую трубку (ЭЛТ). На рекордере измеряется и регистрируется электрохимическим способом на ленте расстояние (дистанция) до объекта; с помощью телефонов и электродинамического громкоговорителя принятые сигналы прослушиваются на звуковой частоте и классифицируются, по максимуму звучания определяется пеленг; на ЭЛТ высвечивается сигнал от объекта и измеряется дистанция до него и направление (пеленг). Длительность паузы между соседними посылками импульсов составляет несколько сек.
        По способу поиска объекта различают Г. шагового поиска, секторного поиска и кругового обзора. При шаговом поиске и пеленговании по максимуму сигнала акустическую систему поворачивают в горизонтальной плоскости на угол 2,5—15°, делают выдержку (паузу), равную времени прохождения импульсом пути от Г. до объекта, находящегося на максимально возможной дальности, и от объекта до Г., а затем производят следующий поворот. При пеленговании фазовым методом акустическую систему выполняют в виде двух раздельных систем, переключаемых бесконтактным коммутационного устройством из режима излучения в режим приёма и обратно. Суммарные и разностные сигналы, снятые с двухканального компенсатора, после усиления и сдвига по фазе подводятся к ЭЛТ и рекордеру, где отсчитывается дистанция. Этот способ характеризуется сравнительно высокой точностью пеленгования, большим (несколько мин) временем обследования водного пространства и возможностью слежения лишь за одним объектом. При секторном поиске акустическая энергия излучается одновременно в определенном секторе, а приём и пеленгование отражённых сигналов производятся при быстром сканировании характеристики направленности в пределах этого сектора. При наиболее распространённом круговом обзоре осуществляют ненаправленное (круговое) излучение и направленный (в пределах узкой вращающейся диаграммы направленности) приём, что обеспечивает обнаружение и пеленгование всех окружающих Г. объектов. Акустическая система (антенна) такого Г. выполняется в виде цилиндра или сферы, состоящих из большого количества отдельных вибраторов, и размещается в подъёмно-опускном устройстве или в стационарном обтекателе. К преимуществам этого способа относятся быстрое обследование всего горизонта, возможность обнаруживать и следить за несколькими объектами.
        Большинство Г. работает в звуковом и ультразвуковом диапазонах частот (4—40 кгц). Это обусловлено необходимостью получения острой направленности антенны (при относительно небольших её размерах) и достижения заданной разрешающей способности. Г. различного назначения обладают дальностью действия от сотен метров до десятков километров и обеспечивают точность пеленгования около 1°. Для уменьшения неблагоприятного влияния гидрологических факторов (см. ) на дальность действия применяют Г. с акустической системой, помещенной в контейнер, буксируемый кораблём на глубине несколько десятков м(Г. с переменной глубиной погружения).
         С. А. Барченков.
      Блок-схема гидролокатора: 1 — акустическая система; 2 — обтекатель; 3 — поворотное устройство; 4 — коммутационное устройство; 5 — импульсный генератор; 6 — усилитель; 7 — рекордер; 8 — электродинамический громкоговоритель; 9 — телефоны; 10 — отметчик (электроннолучевая трубка).

Гидролокация

       Гидролока'ция(от и лат. locatio — размещение), определение положения подводных объектов при помощи звуковых сигналов, излучаемых самими объектами (пассивная локация) или возникающих в результате отражения от подводных объектов искусственно создаваемых звуковых сигналов (активная локация). Под термином «Г.» понимают исключительно звуковую локацию, поскольку звуковые волны являются единственным известным в настоящее время видом волн, распространяющихся в морской среде без значительного ослабления. Г. имеет большое значение в навигации для обнаружения невидимых подводных препятствий, при рыбной ловле для обнаружения косяков и отдельных крупных рыб, в океанологии как инструмент исследования физических свойств океана, картографирования морского дна, поиска затонувших судов и т.п., а также в военных целях для обнаружения подводных лодок, надводных кораблей и др. и наблюдения за ними, для определения координат целей при применении торпедного и ракетного оружия.
        При пассивной локации (шумопеленгации) с помощью определяют направление на источник звука (пеленг источника), пользуясь звуковым полем, создаваемым самим источником. При этом применяют различные методы: поворачивают приёмную акустическую антенну с острой направленностью до положения, в котором принятый сигнал имеет максимальную интенсивность (т. н. максимальный метод пеленгования); измеряют разность фаз между сигналами на выходе двух разнесённых в пространстве антенн (фазовый метод); определяют относительную разницу во времени приёма сигналов двумя разнесёнными антеннами посредством измерения взаимной (корреляционный метод), а также путём комбинации этих методов. При пассивной локации расстояние до объекта определяют по двум или нескольким пеленгам, полученным несколькими приёмными системами, разнесёнными на расстояния, сравнимые с расстоянием до лоцируемого объекта (метод триангуляции); так определяется не только положение шумящего объекта, но и траектория его движения. Системы пассивной Г. применяются главным образом для гидроакустического оснащения подводных лодок и надводных кораблей. Пассивной Г. пользуются также при обнаружении подводных шумящих объектов с помощью распределённых береговых и донных систем звукоприёмников, данные от которых по подводному кабелю передаются на береговые системы обработки, а также с помощью системы гидроакустических радиобуев, информация от которых принимается по радиоканалу специальными самолётами, курсирующими в районе плавания буев. Кроме того, пассивное определение направления на шумящий объект является основой действия акустических самонаводящихся торпед.
        Если источник звука излучает короткий звуковой импульс, то положение источника можно определить по разностям времён прихода импульсов, принятых ненаправленными приёмниками в трёх или более разнесённых по пространству пунктах. Таким способом локализации источников пользуются в береговой системе дальнего обнаружения судов, терпящих бедствие в открытом океане (система СО ФАР); источником звука при этом служит взрыв заряда, погружаемого на определенную глубину.
        Системы активной Г. основаны на явлении звукового ( рис. ) и различаются методами временной посылаемого сигнала и способами обзора пространства. Для определения дальности объекта чаще всего пользуются импульсной, частотной и шумовой модуляциями сигнала. При импульсной модуляции расстояние Rдо цели находится по времени запаздывания t 0отражённого импульса: R=ct 0/2, где с— скорость распространения звука в среде. При частотной модуляции частота fизлучаемого сигнала меняется со временем tпо линейному закону f(t)= f 0+g t, где f 0и g — постоянные начальная частота и скорость изменения частоты. Поэтому отражённый сигнал, принятый приёмником, будет отличаться по частоте от сигнала, излучаемого в данный момент, т.к. принятый сигнал представляет собой задержанную на время t 0копию посланного сигнала, а частота излучаемого сигнала за время t 0изменилась согласно приведённой формуле. Для неподвижной цели разность частот будет постоянной и равной f_ = gt 0. Выделив разностную частоту, определяют расстояние до цели Rпо формуле R=cf_/2g. Аналогична схема действия с шумовым излучением и корреляционной обработкой сигнала.
        Основной характеристикой гидролокаторов является дальность обнаружения, которая зависит от мощности излучаемого сигнала, от уровня акустических помех и от условий распространения звука в водной среде. Дальность обнаружения обычно определяют по величине т. н. порогового сигнала, т. е. сигнала минимальной интенсивности, ещё различимого на фоне помех. Если помеха и сигнал независимы, то пороговый сигнал определяется отношением полной энергии полезного сигнала к мощности помехи в данном частотном интервале. Т. о., дальность обнаружения для систем с различными видами модуляции будет одинаковой, если одинакова их полная энергия излучения. Если основная помеха — хаотическое отражение сигнала от неоднородностей среды (т. н. реверберационная помеха), то пороговый сигнал не зависит от мощности излучаемого сигнала, а определяется исключительно шириной полосы его частот; в этом случае более эффективны системы с частотной модуляцией сигнала и с шумовой посылкой.
        Наряду с помехами на дальность обнаружения оказывает влияние рефракция, имеющая место в сложных гидрологических условиях. Современные гидролокаторы способны обнаруживать большие отражающие объекты в среднем на расстоянии нескольких км.
        Лит.:Клюкин И. И., Подводный звук, Л., 1963; Сташкевич А. П., Акустика моря, Л., 1966; Тюрин А. М., Сташкевич А. П., Таранов Э. С., Основы гидроакустики, Л., 1966.
         Б. Ф. Курьянов.
      Принцип работы гидролокатора: 1 — излучатель; 2 — приёмник; 3 — отражающее тело.

Гидромедуза

       Гидромеду'за(Hydromedusa),
      1) род пресмыкающихся семейства змеиношейных черепах. Характеризуются очень длинной шеей, превышающей длину спинного щита, и наличием на передней ноге 4 когтей ( рис. ). Длина панциря Г. не превышает 30 см. 2 вида; распространены в пресных водоёмах Южной Америки. Питаются преимущественно мелкими рыбами. Яйца откладывают на берегу водоёмов.
      2) Медузоидные особи некоторых кишечнополостных животных класса .
      Гидромедуза Н. tectifera.

Гидромелиоративные институты

       Гидромелиорати'вные институ'ты, готовят инженеров для водохозяйственных и с.-х. предприятий, учреждений, организаций и др. по специальностям гидромелиорация и механизация гидромелиоративных работ. В СССР в 1971 имелось 5 Г. и.: Джамбулский строительный (основан в 1961), Московский гидромелиоративный институт (1930), Новочеркасский инженерно-мелиоративный институт (1930), Ташкентский институт инженеров ирригации и механизации сельского хозяйства (1934), Украинский институт инженеров водного хозяйства (1930, основан как Киевский инженерно-мелиоративный институт, в 1959 был переведён в Ровно и получил современное название). Во всех Г. и. имеются дневные и заочные факультеты (в Украинском институте, кроме того, вечернее отделение и общетехнический факультет), аспирантура. Московскому и Новочеркасскому Г. и. предоставлено право приёма к защите кандидатских и докторских диссертаций, Ташкентскому и Украинскому — кандидатских. Срок обучения в Г. и. 4 года 10 месяцев. Выпускники Г. и. защищают дипломные проекты и получают квалификацию инженера-гидротехника и инженера-механика.
         Б. А. Васильев.

Гидрометаллургия

       Гидрометаллурги'я(от и ), извлечение металлов из руд, концентратов и отходов различных производств водными растворами химических реагентов с последующим выделением металлов из растворов.
        На возможность применения гидрометаллургических процессов для извлечения металлов из руд указывал М. В. Ломоносов (1763). Значительный вклад в развитие Г. внёс русский учёный П. Р. , создавший теорию золота (1843). В начале 20 в. промышленное значение приобрела Г. меди. Позднее были разработаны гидрометаллургические способы получения многих др. металлов.
        Г. включает ряд основных технологических операций, выполняемых в определённой последовательности. Механическая обработка руды — дробление и измельчение с целью полного или частичного раскрытия зёрен минералов, содержащих извлекаемый металл. Изменение химического состава руды или концентрата для подготовки их к — хлорирующий, окислительных, сульфатизирующий или восстановительный обжиг, спекание. Цель — разложение химических соединений извлекаемого металла и перевод их в растворимую форму. Выщелачивание — перевод извлекаемого металла в водный раствор. Эта операция иногда осуществляется попутно в процессе мокрого измельчения (в , ) или в специальной аппаратуре (чаны для выщелачивания, ). Отделение металлосодержащего раствора от измельченного материала обезвоживанием и промывкой в сгустителях, на фильтрах. Подготовка растворов к выделению из них соединений или металлов отделением взвешенных частиц (осветление) или химическим осаждением сопутствующих металлов и примесей. Осаждение металлов или их соединений из растворов электролизом (медь, цинк и др.), восстановлением более электроотрицательным металлом — (медь, серебро, золото и др.), ионообменными смолами или углем, жидкостной экстракцией соединений металла органическими растворителями с последующей реэкстракцией в водный раствор и осаждением из него чистого металла или химического соединения. Переработка осадка с целью дальнейшей очистки выделенного соединения или чернового металла или непосредственное получение готового товарного металла может осуществляться: перекристаллизацией, возгонкой, прокаливанием, переплавкой, электролизом из водных или расплавленных сред.
        При химических взаимодействии металла с растворителем нейтральный атом металла переходит в ионное состояние, образуя растворимое соединение. Растворение происходит легко в случае выщелачивания руд или концентратов, в которых металл присутствует в окисленной (ионной) форме. Примером могут служить окисленные медные и урановые руды, обожжённые цинковые концентраты, продукты хлорирующего обжига. В некоторых случаях для извлечения металла растворителем необходимо предварительное окисление кислородом или др. окислителем (например, при содовом выщелачивании руд, содержащих 4-валентный уран, для перевода последнего в 6-валентный). При растворении металлов (самородных или восстановленных) неизбежно окисление их для перехода в ионное состояние. Окисление металла с одновременной ионизацией окислителя (например, растворённого в воде молекулярного кислорода) в случае более благородных металлов термодинамически возможно лишь при затрате энергии, которая, например, может быть получена при образовании комплексного иона (цианирование золота и серебра, аммиачное выщелачивание металлической меди, никеля).
        Растворение минералов с различными видами химической связи в кристаллической решётке (ковалентная, металлическая, ионная) характерно для выщелачивания сульфидов, арсенидов, селенидов, теллуридов. Растворение этих минералов, если предварительно не проведён окислительный обжиг, в большинстве случаев также требует окисления в , например при аммиачном выщелачивании медно-никелевых сульфидных руд в автоклаве под давлением кислорода или воздуха. Перенос растворителя и удаление продуктов реакции происходит в объёме раствора конвекцией (турбулентной диффузией), а в слое на границе с минералом — молекулярной (тепловой) диффузией. Обычно реакция, происходящая при гидрометаллургическом извлечении, находится в диффузионной области; определяющим фактором является скорость диффузии вещества, лимитирующая течение реакции. Возрастание скорости растворения минерала происходит при увеличении его относительной поверхности (т. е. степени измельчения), при ускорении перемешивания и при повышении температуры.
        Форма поверхности и размер частиц растворяемого минерала определяют функциональную зависимость количества растворившегося металла от времени контакта с раствором; поэтому они влияют на степень извлечения и на объём аппаратов для выщелачивания.
        Растворителями для выщелачивания соединений является преимущественно серная кислота (ванадий, медь, цинк), сода (ванадий в карбонатных рудах, молибден, вольфрам), едкий натр (глинозём, вольфрам), аммиак (медь, никель), цианистые соли (золото, серебро), сернистый натрий (сурьма, ртуть), растворы хлора и хлоридов (благородные металлы, свинец, редкие металлы), тиосульфаты (золото, серебро).
        Для жидкостной экстракции применяют различные соединения (например, раствор трибутилфосфата и ди-2-этилгексилфосфата в керосине и др.). После экстракции очищенное соединение металла извлекается из органического растворителя водным раствором, часто с добавкой кислоты или др. реагента. Из раствора металлы осаждаются методом цементации или углем, или водородом под давлением. Применяются также аниониты или катиониты. После сорбции соединение металла снимается растворителем с ионита и последний подвергается регенерации.
        При больших масштабах гидрометаллургического производства (например, при выщелачивании меди из окисленных крупнокусковых руд) обработка иногда осуществляется орошением штабелей руды слабыми растворами серной кислоты. Медьсодержащие растворы дренируются в сборные резервуары, а затем в цементаторы. Для дроблёных и рассортированных песковых фракций руд (например, золотых) применяется просачивание раствора в чанах через слой хорошо фильтрующей загрузки. Для интенсификации этого процесса раствор иногда предварительно насыщают воздухом, создают вакуум под фильтрующим днищем. Для выщелачивания тонкоизмельчённого материала применяют чаны для перемешивания (механической, пневматической и пневмомеханической) пульпы. Для непрерывного выщелачивания обычно их соединяют последовательно.
        Иногда возможны комбинированные схемы выщелачивания: зернистого классифицированного материала — просачиванием, отделённого мелкого материала ( ) — перемешиванием. В отдельных случаях возможно и другое аппаратурное оформление выщелачивания, например в автоклавах непрерывного и периодического действия. Выщелачивание кислыми растворами производится в стальной гуммированной, керамической или др. кислотоупорной аппаратуре; для щелочных растворов пригодна стальная, иногда деревянная аппаратура. Методы жидкостной экстракции или дополняют выщелачивание, или применяются для непосредственоого извлечения соединений металлов из руд. Экстракция производится по принципу противотока в экстракционных колонках (экстракт и отходящий раствор непрерывно удаляют в разных направлениях). Обезвоживание и промывка производятся в сгустителях (гребковые с центральным и периферическим приводом, многоярусные) и фильтрах (вакуум-фильтры и фильтр-прессы непрерывного и периодического действия). Осаждение из растворов производится в аппаратах, конструкция которых зависит от осадителя. Для химических (растворимых) осадителей применяют реакторы и фильтры. Порошкообразные осадители (цинковая, алюминиевая пыль) вводятся в смесители с раствором, осаждение затем может продолжаться внутри перекачивающего насоса, в трубопроводе и через слой осадителя на фильтре. Можно осаждать металл или его соединения в самой пульпе (например, погружением в пульпу сетчатых корзин с ионитом). Порошковые осадители после контакта с раствором можно выделять . Осаждение кусковыми осадителями (железо для меди, цинковая стружка или уголь для золота) производят в желобах или ящиках с перегородками для зигзагообразного движения раствора вверх и вниз через слой осадителя. Возможно выделение примесей (например, железа) из очищенного раствора с последующим получением основного металла (например, цинка) осаждением на катоде с нерастворимыми анодами. См. также .
        Лит.:Основы металлургии, т. 1—5, М., 1961—68; Автоклавные процессы в цветной металлургии, М., 1969; Burkin A. R., The chemistry of hydrometallurgical processes, L., 1966; Habashi F., Principles of extractive metallurgy, v. 1—2, N. Y. — L. — P., 1969—70.

Гидрометеоиздат

       Гидрометеоизда'т, научно-техническое издательство в системе Главного управления Гидрометеорологической службы при Совете Министров СССР. Находится в Ленинграде, имеет отделение в Москве. Основан в 1934 как редакционно-издательский отдел Центрального управления единой Гидрометслужбы СССР; с 1936 — Г. Выпускает научно-техническую, справочную, прикладную, учебную и научно-популярную литературу по метеорологии, гидрологии, океанологии. Издаёт сборники трудов научно-исследовательские институтов и др. учреждений Гидрометслужбы, методические пособия («Наставления», «Руководства». «Указания») по проведению гидрометеорологических измерений и их обработке, специальные карты, атласы и др. К фундаментальным справочным изданиям относятся: «Ресурсы поверхностных вод СССР» (с 1965), «Справочник по климату СССР» (3-е изд., с 1964). Г. издаёт также ежемесячный научно-технический журнал «Метеорология и гидрология» (с 1935), научно-популярный ежегодник «Человек и стихия» (с 1962), «Бюллетень Всемирной метеорологической организации» (с 1968). Объём издательской продукции Г. в 1970 составил 20 млн. печатных листов-оттисков.
        А. Н. Михайлов.

Гидрометеорологическая обсерватория

       Гидрометеорологи'ческая обсервато'рия(ГМО), производственно-техническое учреждение . Осуществляет изучение гидрометеорологического режима, методическое и техническое руководство сетью гидрометеорологических станций и постов, обобщает гидрометеорологические материалы и издаёт ежемесячники, ежегодники, справочники, атласы, обеспечивает ими народно-хозяйственные организации, научные и проектные учреждения. В ГМО имеются отделы метеорологии и климата, гидрологии суши и моря, агрометеорологии, лаборатория по изучению химического состава воздуха, вод суши, морей и др. Эти, т. н. режимные ГМО были созданы в 1956. Наряду с режимными ГМО, обслуживающими территории республик, краев, областей, организованы специализированные ГМО для изучения гидрометеорологического режима отдельных объектов: морей, водохранилищ и крупных озёр. Современные ГМО оснащаются радиолокационными системами, позволяющими вести наблюдения за погодой в радиусе 300 км.
         И. В. Кравченко.

Гидрометеорологическая служба СССР

       Гидрометеорологи'ческая слу'жба СССР(ГМС), государственная организация, основной задачей которой является обеспечение народного хозяйства всеми видами метеорологической, гидрологической и агрометеорологической информации (состояние погоды, морей, рек, озёр, краткосрочные и долгосрочные прогнозы). Для этого ГМС располагает сетью гидрометеорологических станций и постов, производящих регулярные наблюдения за состоянием атмосферы, вод суши и морей, аэрологических станций, измеряющих температуру, влажность воздуха и ветер до высот 30—40 км, станций ракетного зондирования для измерения верхних слоев атмосферы. В конце 1960-х гг. создана специальная космическая система, состоящая из нескольких искусственных метеорологических спутников Земли, позволяющая получать данные об облачном и снежном покрове по всему земному шару, о распределении льда на морях и океанах, о температуре подстилающей поверхности, облаков и др. характеристики. Данные наблюдений станций и постов сообщаются по телеграфу и радио до восьми раз в сутки в республиканские и территориальные управления ГМС и используются для текущей информации о гидрометеорологических условиях и состоянии с.-х. культур, а также для составления всех видов гидрометеорологических прогнозов.
        ГМС производит сбор, обобщение и распространение гидрометеорологической информации по территории СССР, зарубежных стран и акватории Мирового океана; анализ этой информации с целью изучения гидрометеорологических процессов и явлений по всему земному шару, включая Арктику и Антарктику. В задачи ГМС входят разработка и внедрение в практику методов активного воздействия на погодные, климатические и гидрологические процессы; изучение химического состава атмосферного воздуха, вод суши, морей и океанов; координация научных исследований по метеорологии и гидрологии.
        В систему ГМС входит ряд крупных научно-исследовательских институтов, осуществляющих научные исследования по гидрометеорологии; к ним относятся: Гидрометеорологический научно-исследовательский центр СССР, Главная геофизическая обсерватория, Центральная аэрологическая обсерватория, а также научно-исследовательские институты: Прикладной геофизики, Гидрологический, Гидрохимический, Океанографический, Арктический и Антарктический, Экспериментальной метеорологии, региональные научно-исследовательские гидрометеоинституты в Новосибирске, Ташкенте, Хабаровске и др.
        Руководит деятельностью ГМС Главное управление гидрометеорологической службы при Совете Министров СССР (ГУГМС), которому подчиняются республиканские и территориальные управления ГМС, районные радиометеорологические центры в Арктике, научно-исследовательские институты, учебные заведения. В подчинении республиканских и территориальных управлений ГМС находятся бюро погоды, , гидрометбюро, авиационные метеостанции, сеть наблюдательных станций и постов. ГМС проводит работу по автоматизации основных производств. процессов путём установки полуавтоматических и автоматических гидрометстанций, метеорологических радиолокаторов, обработку и анализ данных наблюдений и расчёты прогнозов на ЭВМ.
        Результаты научных исследований и наблюдений ГМС публикуются в журнале , в , , , а также в многотомных изданиях-справочниках о климате и водных ресурсах СССР.
        Лит.:Метеорология и гидрология за 50 лет Советской власти. Сборник, Л., 1967.
         И. В. Кравченко.

Гидрометеорологическая станция

       Гидрометеорологи'ческая ста'нция, учреждение, ведущее метеорологические и гидрологические наблюдения над состоянием погоды, режимом океанов, морей, рек, озёр и болот. В зависимости от задач Г. с. разделяются на материковые, морские, речные, озёрные и болотные. Наблюдения ведутся по единой программе в установленные сроки. Первые Г. с. (точнее — метеорологические станции) в России были организованы в начале 19 в.; в конце 19 в. было организовано большое количество различных ведомственных Г. с. (морских, сельскохозяйственных, железнодорожных и др.). За годы Советской власти сеть Г. с. значительно расширилась (имеется около 4000 станций со сложной программой наблюдений и около 6000 постов с простой программой). Г. с. существуют во всех крупных городах, аэропортах, в отдалённых и труднодоступных районах. В СССР основная сеть Г. с. входит в состав Гидрометеорологической службы СССР. См. также , .

Гидрометеорологический научно-исследовательский центр СССР

       Гидрометеорологи'ческий нау'чно-иссле'довательский центр СССР, Гидрометцентр СССР, основное научное, методическое и оперативное учреждение СССР, обеспечивающее все отрасли народного хозяйства различными видами метеорологических, гидрологических и агрометеорологических прогнозов (включая прогнозы урожая). Находится в Москве. Г. научно-исследовательский центр — один из трёх мировых метеорологических центров в системе . Образован в 1965 в результате объединения Центрального института прогнозов и Мирового метеорологического центра.
        В институте осуществляется обработка (на ЭВМ) н анализ информации, поступающей ежесуточно от метеорологических, аэрологических, гидрологических станций СССР и др. стран, а также с рейсовых судов, самолётов и особенно с ; производятся расчёты на ЭВМ метеорологических карт будущего развития атмосферных процессов на разных высотах (от поверхности Земли до 15—20 км) над СССР, Северным полушарием или над всем земным шаром. Готовые прогностические карты и др. материалы передаются в местные органы для составления местных прогнозов. Одновременно с этим даются прогнозы и предупреждения для самого широкого пользования. Г. научно-исследовательский центр ведёт исследовательскую работу по созданию новых, более совершенных методов прогнозов, а также по проблемам автоматизации обработки информации. Имеет филиал (в г. Обнинск) для накопления режимных данных и изучения мирового климата. Награжден орденом Ленина (1967).
        Лит.:Белоусов С. Л., Бугаев В. А., Развитие методов метеорологического прогнозирования и Гидрометцентр СССР, «Метеорология и гидрология», 1968, №3.
         В. А. Бугаев.

Гидрометеорологическое образование

       Гидрометеорологи'ческое образова'ние, система подготовки специалистов метеорологов, гидрологов, океанологов и агрометеорологов.
        До 30-х гг. 20 в., в связи с ограниченными масштабами гидрометеорологических исследований, в СССР и др. странах учебные заведения не готовили специалистов гидрометеорологического профиля. В области гидрометеорологии работали специалисты смежных профессий: в метеорологии — географы и физики, в агрометеорологии — агрономы, в гидрологии — инженеры путей сообщения и гидротехники, в океанологии— судоводители. В 30-е гг., в связи с интенсивным развитием производительных сил, резко увеличилась потребность в квалифицированных специалистах гидрометеорологах. Для их подготовки в 1930 были созданы Московский гидрометеорологических институт (в 1944 переведён в Ленинград, см. ), Владивостокский, Московский и Ростовский гидрометеорологические техникумы, в 1932 — Харьковский гидрометеорологический институт (в 1944 переведён в Одессу) — первые в мире специализированные учебные заведения такого профиля. С организацией этих учебных заведений началось становление Г. о. как самостоятельные отрасли специального образования.
        Значительный вклад в развитие отечественного Г. о. внесли профессора Б. П. Алисов, Б. А. Аполлов, В. А. Белинский, Е. В. Близняк, М. А. Великанов, Л. К. Давыдов, Н. Н. Зубов, Б. П. Орлов, С. А. Советов, П. Н. Тверской, С. П. Хромов, В. В. Шулейкин и др.
        В 1970 специалистов с высшим Г.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37