Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (ГЛ)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ГЛ) - Чтение (стр. 10)
Автор: БСЭ
Жанр: Энциклопедии

 

 


Возникнув из потребностей психотерапии, Г. п. сохраняет связи с медицинской психологией. Со своей стороны, она стимулировала развитие новой отрасли медицины, рассматривающей значение психологических факторов в соматических заболеваниях (т. н. психосоматическое направление в медицине). Однако патологические состояния психики трактуются в Г. п. не как болезни в обычном понимании, а как выражение общечеловеческих трудностей и психических конфликтов, принявших лишь резко выраженную открытую форму. Так, Фрейд, исходя из клинической практики, выдвинул представление о бессознательных психических механизмах, лежащих в основе неврозов, сновидений, ошибочных действий и т.д. Эти феномены он объяснял как «компромиссное образование», отражающее конфликт между бессознательными влечениями и установками сознательного «Я» (или как результат столкновения двух принципов психической деятельности — «принципа удовольствия» и «принципа реальности»). Фрейд сформулировал основную систему понятий Г. п. ( , символизация, фиксация, регрессия и др.). Адлер выделяет в качестве главного мотива стремление индивида к самоутверждению («воле к власти»). Система Адлера стала одним из источников позднейших «культурно-социологических» течений Г. п. (главным образом в США — К. Хорни, Э. , Х. Салливан и др.). С др. стороны, Юнг расширяет представление о структуре и функциях бессознательного, которое у него включает также коллективное бессознательное. Учения Фрейда и Юнга получили довольно широкое распространение и за пределами собственно психологии, в истории культуры, в частности юнговское истолкование мифов, символов, религиозно-магических обрядов как образов коллективного бессознательного (архетипов). Реакция на преувеличенный интерес к бессознательному проявилась в т. н. эгопсихологии (получила развитие с 1940-х гг. прежде всего в США — Х. Хартман, П. Федерн и др.), выдвигающей на первый план значение сознательное «Я» (Эго). В последнее время особенно развились новые направления Г. п., находящиеся под прямым воздействием философских концепций и (главным образом в Швейцарии и ФРГ, например «экзистенциальный анализ» Л. Бинсвангера, Швейцария и др.). Наряду с тенденцией к интеграции Г. п. с (например, в медицинской антропологии немецкого физиолога В. Вайцзеккера) характерны истолкования Г. п. в духе («новая венская школа») и др. Течения Г. п. в США в значительной степени находятся под влиянием и ; попытки синтеза различных течений Г. п. (Р. Манро и др.) не увенчались успехом. При оценке Г. п. как неоднородного и сложного комплекса следует отличать выдвинутые ею методы терапии, некоторые установленные новые факты из области психологии бессознательного от их философско-теоретических истолкований, которые часто имеют иррационалистический или механистический характер.
        Лит.:Морозов В. М., Глубинная психология и психиатрия, «Журнал невропатология и психиатрии им. С. С. Корсакова», 1958, т. 58, в. 11; Современная психология в капиталистических странах, М., 1963; Какабадзе В. Л., Понятие бессознательного в глубинной психологии, в сборнике: Проблемы сознания, М., 1966; Munroe R., Schools of psychoanalytic thought, N. Y., 1956; Wyss D., Die tiefenpsychologischen Schulen von den Anfдngen bis zur Gegenwart, 3 Aufl., Gцtt., 1970.
         Д. Н. Ляликов.

Глубинная эрозия

       Глуби'нная эро'зия, см. .

Глубиннонасосная эксплуатация

       Глубиннонасо'сная эксплуата'ция, механизированный подъём жидкости (как правило, нефти) из буровых скважин при разработке нефтяных месторождений. Для Г. э. широко применяются штанговые глубинные насосы и погружные центробежные электронасосы. Последние более производительны.
        Для подъёма жидкости штанговыми глубинными насосами ( рис. 1 ) в скважину опускают трубы с цилиндром и всасывающим клапаном на конце. Внутри цилиндра перемещается поршень-плунжер с нагнетательным клапаном. Плунжер посредством длинной колонны стальных штанг соединён с балансиром станка-качалки, который придаёт плунжеру возвратно-поступательное движение. Прочность штанг и их деформации ограничивают область применения штанговых насосов глубинами до 3200 мпри производительности до 20 m 3/cym. При малых глубинах (200—400 м) возможна производительность до 500 м 3/сут.
        Электронасос — погружной центробежный многоступенчатый (до 420 ступеней) — опускают в скважины на трубах ( рис. 2 ). Вал насоса жестко соединяется с валом погружного электродвигателя мощностью до 120 квт. В корпус электродвигателя заливают трансформаторное масло, давление которого поддерживается на 0,1—0,2 Мн/м 2больше давления на глубине погружения насоса. Вдоль колонны труб укрепляется кабель для электропитания. На поверхности около устья скважины устанавливаются трансформатор и станция управления с необходимой автоматикой и защитой установки при возможных отклонениях от нормального режима или нарушениях изоляции. Обычно их применяют при дебитах жидкости свыше 40 м 3 /сут.
        Лит.:Богданов А. А., Погружные центробежные электронасосы, М., 1957; Адонин А. Н., Процессы глубиннонасосной нефтедобычи, М., 1964: Разработка и эксплуатация нефтяных и газовых месторождений, 2 изд., М., 1965.
         В. И. Щуров.
      Рис. 2. Схема установки погружного центробежного электронасоса: 1 — электродвигатель; 2 — протектор; 3 — сетчатый фильтр насоса; 4 — погружной центробежный насос; 5 — специальный кабель; 6 — направляющий ролик; 7 — кабельный барабан; 8 — автотрансформатор; 9 — автоматическая станция управления.
      Рис. 1. Схема установки со штанговыми глубинными насосами: 1 — всасывающий клапан; 2 — нагнетательный клапан; 3 — насосные штанги; 4 — тройник; 5 — сальник; 6 — балансир; 7 и 8 — кривошипно-шатунный механизм; 9 — двигатель.

Глубинные горные породы

       Глуби'нные го'рные поро'ды, абиссальные породы, плутонические породы, горные породы, образовавшиеся на больших глубинах; см. .

Глубинные разломы

       Глуби'нные разло'мы, линеаменты, узкие, линейно вытянутые зоны нарушения сплошности горных пород, пронизывающие земную кору и проникающие в мантию Земли. Прослеживаются на многие сотни и тысячи кмпо простиранию и до 700 кмв глубину при ширине от нескольких сотен мдо первых десятков км. Г. р. разделяют земную кору на глыбы, отличающиеся характером движений и структурой. Развиваются на протяжении длительных интервалов геологического времени (сотни миллионов, иногда более 1 млрд. лет) и являются важнейшим типом разрывных нарушений земной коры, определяющим границы её основных структурных элементов. Возникновение первых Г. р. относят к началу протерозоя (около 2,5 млрд. лет назад). Как особая категория выделены в 40-х гг. 20 в. в результате работ А. П. Карпинского, В. А. Обручева, И. Г. Кузнецова и др. — в СССР; Х. Клооса, Р. Зондера. Х. Штилле и др. — за рубежом. Развёрнутое определение термина «Г. р.» было предложено в 1945 А. В. Пейве. Учение о Г. р. превратилось в самостоятельный раздел геотектоники.
        Г. р. служат зонами повышенной проницаемости земной коры и верхней мантии, благодаря чему в их пределах возникают магматические очаги (первичные в мантии, , вторичные в коре) и концентрируется магматическая деятельность. К Г. р. приурочены вулканические пояса, пояса внедрений ультраосновной магмы (альпинотипных гипербазитов), плутоны гранитоидов и рудные поля. С Г. р. часто связаны границы континентов, морей и океанов, горных стран и др. Состав, фации и мощности осадков по разные стороны Г. р. различны.
        Выявление и изучение Г. р. ведутся главным образом геофизическими методами, особенно с помощью глубинного сейсмозондирования (ГСЗ).
        С поверхностями Г. р. связаны очаги землетрясений, изучение распределения которых даёт информацию о глубине проникновения и наклоне поверхности разлома, в том числе уже за пределами досягаемости ГСЗ. По данным сейсмологии, Г. р. разделяются на три группы: затухающие в самых верхах мантии (выше астеносферы), достигающие глубин 100—300 км(ниже астеносферы), достигающие глубин 400—700 км(средней мантии). Наиболее широко распространены Г. р. первой группы (нормальные). Г. р. второй и третьей групп приурочены только к геосинклинальным подвижным поясам, причём Г. р. третьей группы (сверхглубинные) — исключительно к периферии Тихоокеанского пояса.
        По характеру преобладающих перемещений Г. р. подразделяются (А. В. Пейве, В. Е. Хаин, А. И. Суворов) на четыре класса: 1) глубинные сбросы, 2) глубинные раздвиги, 3) глубинные сдвиги, 4) глубинные надвиги. Г. р. типа сбросов многочисленны и в геосинклиналях (на стадии их погружения), и на платформах, и по периферии молодых океанов — Атлантического, Индийского. Раздвиги образуют структуры типа рифтов — Байкальского, Рейнского, Восточно-Африканских, рифтов срединно-океанических хребтов; они формируются в условиях растяжения и сопровождаются излияниями базальтов (в океанах — также внедрением гипербазитов). Глубинные сдвиги наблюдаются в различных геоструктурных областях, как в океанах, так и на континентах, но развиваются преимущественно в определённые геологические эпохи (в геосинклиналях в эпохи ). По отношению к простиранию подвижных поясов они бывают продольными, поперечными или диагональными. Глубинные надвиги развиты во внутренних зонах геосинклинальных поясов и по их периферии (кольцо разломов вокруг Тихого ок.). Их активность приурочена к орогеническим эпохам.
        В распределении Г. р. по земной поверхности наблюдается определённая закономерность: преобладают две системы разломов взаимно перпендикулярного направления — ортогональная, параллельная меридианам и параллелям, и диагональная по отношению к ним (С.-З. — Ю.-В. и Ю.-З. — С. -В.). Некоторые исследователи выделяют ещё одну (С. — С.-З. — Ю. — Ю.-В., Ю. — Ю.-З. — С. — С.-В.) или две (ещё З. — С.-З. — В. — Ю.-В., З. — Ю.-З. — В. — С.-В.) дополнительные системы. Происхождение этой регматической (по Зондеру) планетарной сетки разломов обычно связывают с напряжениями, возникающими при изменениях скорости вращения Земли и вызывающими перестройку её фигуры (увеличение или уменьшение полярного сжатия).
        Лит.:Пейве А. В., Глубинные разломы в геосинклинальных областях, «Изв. АН СССР. Серия геологическая», 1945, № 5; его же, Общая характеристика, классификация и пространственное расположение глубинных разломов, там же, 1956, № 1; его же, Разломы и их роль в строении и развитии земной коры, в кн.: Структура земной коры и деформации горных пород, М., 1960; его же, Разломы и тектонические движения, «Геотектоника», 1967, № 5; Хаин В. Е., Общая геотектоника, М., 1964; Суворов А. И., Закономерности строения и формирования глубинных разломов, М., 1968 (Труды Геологического института АН СССР, в. 179); Sonder R. A.. Die Lineamenttektonik und ihre Probleme, «Eclogae Geologicae Helvetiae», 1938, v. 31, № 1; его же, Mechanik der Erde, Stuttg., 1956; Vening-Meinesz F. A., Shear patterns of the Earth's crust, «Transactions American Geophysical Union», 1947, v. 28, № 1; Cloos H., Grundschollen und Erdnдhte, «Geologische Rundschau», 1948, Bd 35, H. 2; Moody J. D., Crustal shear patterns and orogenesis, «Tectonophysics», 1966, v. 3, № 6.
         В. Е. Хаин.

Глубиномер

       Глубиноме'р, прибор для измерения глубин отверстий, пазов, высоты уступов и т.д. Основанием Г. устанавливают на поверхность, от которой определяют размер. В зависимости от вида отсчётного устройства, по которому определяется размер, Г. подразделяются на штангенглубиномеры ( рис. 1 ) с пределом измерений от 0 до 200 и 320 мми величиной отсчёта 0,05 мм; с пределом измерений от 0 до 500 мми величиной отсчёта 0,1 мм; микрометрические Г. ( рис. 2 ) с пределом измерения до 150 мми ценой деления 0,01 мм; индикаторные Г. ( рис. 3 ) с пределом измерения 100 мми ценой деления 0,01 мм. Большое распространение получили штангенглубиномеры с плоским мерным стержнем, некоторые из них имеют штанги с уступом на конце для измерения, например, толщины паза или штанги в виде цилиндрического стержня диаметром 2 ммдля измерения глубин в труднодоступных местах. На штангенглубиномерах размер отсчитывается непосредственно по линейке с делениями; микрометрические и индикаторные Г. снабжаются сменными измерительными стержнями, показания отсчитываются соответственно по микрометру с пределом измерения до 25 ммили индикатору с пределом измерения 10 мм.
         Н. Н. Марков.
      Рис. 1. Штангенглубиномер: 1 — рамка с основанием; 2 — штанга; 3 — микрометрический механизм; 4 — нониус.
      Рис. 2. Микрометрический глубиномер: 1 — основание; 2 — стебель; 3 — измерительный стержень; 4 — барабан; 5 — трещотка; 6 — стопор.
      Рис. 3. Индикаторный глубиномер: 1 — основание; 2 — державка; 3 — индикатор; 4 — винт для крепления индикатора; 5 — сменный измерительный стержень.

Глубокая операция

       Глубо'кая опера'ция, теория, разработанная сов. военными специалистами, выражающая принципиальные взгляды на ведение боевых действий массовыми, технически оснащенными армиями. Теория Г. о. явилась крупным достижением в развитии сов. военной науки. Она указала пути выхода в военном искусстве из позиционного тупика, создавшегося в ходе 1-й мировой войны 1914—18, и сыграла важную роль в дальнейшем развитии . К середине 30-х гг. были выработаны принципы ведения глубоких наступательных операций с массированным применением танков, авиации, артиллерии и воздушных десантов. Основная идея теории Г. о. состояла в нанесении удара по всей глубине обороны противника т. о., чтобы, используя артиллерию, авиацию, бронетанковые войска и воздушные десанты, нанести поражение всей оперативной группировке врага. В ходе Г. о. решались две задачи: прорыв фронта обороны противника одновременным ударом на всю его тактическую глубину и немедленный ввод эшелона подвижных войск для развития тактического прорыва в оперативный успех.
        Теория Г. о. получила признание в большинстве армий и успешно применена Советскими Вооруженными Силами в Великой Отечественной войне 1941—45. В послевоенное время теория Г. о., опираясь на новую материальную базу и опыт минувшей войны, получила дальнейшее развитие. Детально разработанная советскими военными специалистами теория Г. о. обогатила и творчески развила сов. военное искусство.
        Лит.:Временный полевой устав 1936, РККА (ПУ-36), М., 1938; 50 лет Вооружённых Сил СССР [1918—1968], М., 1968, с. 214—18.
         П. К. Алтухов, С. Ф. Бегунов.

Глубокая печать

       Глубо'кая печа'ть, один из основных видов полиграфической техники (см. , ), характеризующийся тем, что печатный оттиск получают с форм, на которых краска находится в углублённых печатающих элементах. При Г. п. различная глубина печатающих элементов на форме изменяется в зависимости от насыщенности светотеней воспроизводимого изображения. Поэтому на оттиске образуются слои краски различной толщины и создаются тончайшие градации и переходы тонов. Это — преимущество Г. п. перед др. видами печати при воспроизведении тоновых изображений.
        Г. п. появилась в середине 15 в. До середины 19 в. существовали только ручные способы изготовления печатных форм — гравирование на металлических пластинах углублённых печатающих элементов специальными резцами и иными инструментами (резцовая гравюра, чёрная манера, сухая игла; см. ) и химические способы гравюры — , , . Техника репродуцирования того времени требовала больших затрат труда и времени. Степень точности воспроизведения оригинала зависела от художественного и технического мастерства гравёра-художника. В конце 19 в. был разработан способ фотомеханического переноса изображения на поверхность металлической пластины с последующим химическим травлением печатающих элементов (см. ). Печатание с таких форм производилось на ручных станках.
        В 1910 была изобретена ракельная Г. п., которая характеризуется механизацией печатания на ротационных машинах с применением жидкой краски, причём краска с пробельных (непечатающих) элементов формы удаляется . Формы для ракельной Г. п. выполняются фотомеханическим способом с использованием . На лист пигментной бумаги копируют сначала растр, а затем отретушированный тоновый диапозитив. Полученное изображение (копию) накладывают на медную полированную обезжиренную поверхность формного цилиндра пигментножелатиновым слоем к меди, прикатывают к цилиндру резиновым валиком в пигментнопереводном станке и проявляют теплой водой. Вода растворяет незадубившуюся при копировании часть слоя желатина. Задубившаяся часть слоя остается на поверхности цилиндра в виде рельефа, полностью воспроизводящего градацию тонов. Медная форма травится на различную глубину видными растворами хлорного железа. На поверхность формы в печатной машине наносится жидкая краска, которая заполняет её углубления. Краски для Г. п. изготовляют на легко испаряющихся растворителях (толуол, бензин, бутилацетат и др.) Тиражеусточивость медной печатной формы — 25—30 тыс. оттисков Для повышения тиражеустоичивости форму покрывают электролитическим путем тонким (0,004—0,005 мм) слоем хрома. В 1950-х гг. быстро развивается массовая иллюстрационная и особенно многокрасочная Г. п. Малопроиводительные листовые печатные машины (5—6 тыс. однокрасочных оттисков в час) заменяются высокопроизводительными ролевыми многокрасочными машинами (15—20 тыс. многокрасочных оттисков в час), а затем и многосекционными печатными агрегатами с контрольно-регулирующей автоматикой и устройствами, позволяющими получать листы в скомплектованном и сшитом виде.
        Г. п. применяется главным образом для изготовления массовой продукции с большим количеством тоновых иллюстраций — многотиражные журналы типа «Огонёк», «Советский Союз» и др., альбомы с фотоиллюстрациями, открытки, портреты, вклейки в книги. Г. п. используется и при печатании упаковочно-этикеточной изопродукции для промышленных товаров, главным образом на прозрачных плёночных материалах. Книги изготовляются способом Г. п. сравнительно редко, т.к. текст воспроизводится в Г. п. хуже, чем при высокой и плоской печати из-за деформации рисунка букв растром и некоторого расплывания жидкой краски на бумаге. Для Г. п. перспективно устройство программного регулирования режима проявления пигментных копий, автоматических систем для травления форм, автоматических регуляторов вязкости краски и др. В СССР впервые создана светочувствительная пигментная бумага, разрабатывается технология изготовления светочувствительного копировального слоя для Г. п. на недеформирующейся основе — пленке, применение которого полностью устранит деформацию в формном процессе.
        Лит.:Григорьев Г. К. ил Синяков Н. И., Производство форм глубокой печати, М. — Л., 1950; Фельдман Б. А., Технология производства массовых иллюстрированных журналов, М., 1956; Ефремов С. В., Стругач В. А., Дубинская В. А., Глубокая печать, М., 1961; Синяков Н. И., Технология изготовления фотомеханических печатных форм, М., 1966.
         О. И. Сопова.
      Схема изготовления печатной формы: а — копирование растра на пигментную бумагу; б — копирование диапозитива на пигментную бумагу; в — перевод пигментной копии на формный цилиндр; г — пигментная копия на формном цилиндре после проявления; д — печатная форма после травления; е — печатная форма после удаления пигментной копии; ж — печатная форма после нанесения краски; з — удаление печатной краски с поверхности формы ракелем; и — получение оттиска на бумаге.

Глубокий

       Глубо'кий, посёлок городского типа в Каменском районе Ростовской области РСФСР, на р. Глубокая (приток Северского Донца). Ж.-д. станция (Глубокая) на линии Миллерово — Лихая. 14 тыс. жителей (1970). Предприятия ж.-д. транспорта, комбинат стройматериалов, молочный завод, мельница, инкубаторно-птицеводческая станция.

Глубокий офсет

       Глубо'кий офсе'тофсетная печатная форма (см. ) с углубленными, по сравнению с пробельными (непечатающими), печатающими элементами Первоначально этот термин применяли для обозначения форм, изготовленных позитивным способом копирования на алюминиевых или цинковых пластинах, причём углубление (на 0,001—0,002 мм) поручалось путём химического травления металла на печатающих элементах. Формы Г. о. делают также на биметаллических пластинах где печатающие элементы создаются на поверхности меди, а пробельные — на хроме или никеле. Печатающие элементы углубляются путём удаления на этих участках верхнего слоя металла (хрома или никеля) химическим или электрохимическим способом или созданием изображения на поверхности меди с последующим наращением на пробельные участки верхнего металла (никеля или хрома). Величина углубления — 0,0015—0,004 ммв зависимости от толщины металла на пробельных элементах. Углубление печатающих элементов повышает их устойчивость к механическим воздействиям в процессе печатания и позволяет увеличить толщину красочного слоя на форме и соответственно на оттиске.
         А. Л. Попова.

Глубоководные животные

       Глубоково'дные живо'тные, обитатели глубин от 500 мдо максимальных (около 11 тыс. м). Различают фауны батиальную (см. ), абиссальную (см. ) и ультраабиссальную, или хадальную. Вследствие особых условий жизни фауна глубин качественно и количественно во много раз беднее, чем в верхних горизонтах моря; на глубинах rocподствуют иглокожие, ракообразные, моллюски, многощетинковые черви. Интенсивные исследования фауны глубин были начаты в 70-е гг. 19 в. английской экспедицией на «Челленджере». Фауна наибольших глубин (6—11 км) планомерно изучена лишь за последние десятилетия советскими экспедициями на «Витязе» (1949—70), датской экспедицией на «Галатее» (1950—52) и др. В 1958 экспедицией на «Витязе» добыты донные животные с глубины более 10 км. В 1960 прямые наблюдения на батискафе на глубине 10900 мпровели французские учёные Ж. Пиккар и Д. Уолш. На глубинах нет солнечного света, отсутствуют водоросли, солёность постоянная, температуры низкие, грунты полужидкие, обилие двуокиси углерода, громадное гидростатическое давление (увеличивающееся на 1 amна каждые 10 м). Источники пищи Г. ж. —бактерии, а также «дождь трупов» и органический детрит, поступающие сверху; поэтому Г. ж. — детритояды и хищники, Г. ж. или слепые или с очень развитыми глазами, часто телескопическими; многие рыбы и головоногие моллюски с фотофорами (см. ); у др. форм светится поверхность тела или её участки; для информации используются гидроакустические способы; окраска тёмная (у рыб бархатно-чёрная) или пигментация отсутствует и тело белесоватое. Низкая температура и обилие углекислого газа затрудняют выпадение извести из раствора; это ведет к уменьшению обызвествления скелетов, иногда к желеобразности тканей; отсутствие тяжёлого скелета и уплощение тела препятствуют погружению Г. ж. в ил: длинные конечности (ходули), иглы, стебли удерживают тело над дном. Постоянство условий среды обусловило высокую чувствительность Г. ж. к её изменениям; однако некоторые виды совершают вертикальные миграции большого масштаба; например, каракатица Abraliopis watasenia у берегов Японии для размножения стаями поднимается на поверхность. Скудные запасы пищи — причина малых размеров и разреженности поселений Г. ж., развития хищничества и появления ловчих и защитных приспособлений. Гигантизм Г. ж. довольно редок (например, полип Monocaulus достигает вместе с ножкой 3 мдлиной, асцидии — до 1 мвысоты, кальмары и рыбы — 2—5 м). Среди Г. ж. имеются многие со специальными приспособлениями, например рыбы-удильщики с фотофорами и отростками-приманками, зубастые змеевидные Stomias boa, угреобразные с огромным ртом Р Saccopharynx и Eurypharynx, светящиеся анчоусы, бесцветный мягкотелый Paraliparis, слепой с длиннейшими лучами плавников Benthosaurus и т.д. Рыба Chiasmodon глотает жертву, в 2—3 раза превышающую длину собственного тела; креветки Acanthephyra, каракатица Heterotheutis выпускают как дымовую завесу клубы светящейся жидкости.
      
       Лит.:Зенкевич Л. А. Глубоководные впадины Тихого океана и их фауна, «Вести АН СССР» 1953 № 12; Зенкевич Л. А., Бирштейн Я. А., Беляев Г. М., Изучение фауны Курило-Камчатской впадины, «Природа», 1954, № 2; Расс Т. С., Рыбы самых больших глубин, там же, 1958, № 7; Тарасов Н. И., Море живёт, 3 изд., М., 1956; Итоги науки. Достижения океанологии, т. 1, М., 1959; Беляев Г. М., Донная фауна наибольших глубин (ультраабиссали) мирового океана, М., 1966; Bruun A. F., Animal life of the deep sea bottom, в кн.: The Galathea deep sea of the expedition, N. Y., 1956.
         Е. Ф. Гурьянова.
      Сцифомедуза Peryphilla hyacintina.
      Глубоководные животные: 1 — кальмар Thaumatolampas diadema; 2 — рыба Galathothauma axeli.
      Глубоководные животные: 1 — изопода Storthyngura benti; 2 — моллюск Neopilina ewingi; 3 — голотурия Scotoplanes murrayi.
      Глубоководные животные: 1 — морская звезда Stiracaster horridus; 2 — голотурия Ipsilothuria bitentaculata; 3 — многощетинковый червь Macellicephalus grandicirra; 4 — рак Probeebei mirabilis; 5 — погонофоры Spirobranchia beklemischevi.
      Асцидия Culeolus murrayi.
      Рыба-удильщик Melanocetus jonstoni.
      Глубоководные животные: 1 — Рыба Photostomias guerneri; 2 — Рыба Myctophum punctatum; 3 — Осьминог Vampyroteuthis infernalis.
      Глубоководные животные: 1 — морское перо Umbellula tomsoni; 2 — актиния Galatheanthemum profundale и 3 — усоногие рачки Scalpellum на ней.
      Глубоководные животные: 1 — мизида Gnathophausia gigas; 2 — рыба Careproctus amblystomopsis; 3 — морская лилия Bathycrinus pacificus; 4 — морское перо Kaphabelemnon biflorum; 5 — голотурия Psychropotes longicauda; 6 — морской ёж Echinocrepis cuneata; 7 — эхиурида Prometor grandis; 8 — губка Hyalomena.

Глубоководные отложения

       Глубоково'дные отложе'ния, осадки, формирующиеся на больших глубинах на дне морей и океанов; см. .

Глубоководный насос

       Глубоково'дный насо'с, глубинный, погружной насос, вертикальный насос центробежного, поршневого или др. типа, устанавливаемый обычно в буровых скважинах в погруженном в подаваемую жидкость положении. Г. н. отличаются сравнительно малыми поперечными габаритными размерами (200—400 мм). Применяются для водоснабжения при использовании подземных вод, для понижения уровня грунтовых вод при строительстве, а также для добычи нефти (см. ). Наиболее распространены Г. н. центробежного типа, например отечественные насосы ЦЭВ (центробежный водяной насос с электрическим приводом) с подачей от 2 до 360 м 3/чи напором от 25 до 675 м.
        Лит.:Хохловкин Д. М., Глубинные насосы для водопонижения и водоснабжения, 3 изд., М., 1962.

Глубокое (город в Витебской обл.)

       Глубо'кое, город (с 1940), центр Глубокского района Витебской области БССР. Ж.-д. станция на линии Пабраде — Полоцк. 12 тыс. жителей (1970). Мясокомбинат, маслосыродельный, консервный, пивоваренный, молококонсервный заводы.

Глубокое (озеро в Красноярском крае)

       Глубо'кое, Омук-Кюель, озеро в Таймырском (Долгано-Ненецком) национальном округе Красноярского края РСФСР. Площадь 143 км 2. Узкое длинное озеро, лежит в ледниково-тектонической долине южнее хребта Ламские горы (западная окраина массива Путорана). Из Г. вытекает р. Глубокая (Диринг-Юрях), впадающая в оз. Мелкое (бассейн Пясины). Питание снеговое и дождевое; замерзает во второй половине октября, вскрывается в июне. Основные притоки: Чачир, Северный Инкондьекит и главная Ящкун (исток оз. Собачье).

Глубокое охлаждение

       Глубо'кое охлажде'ние, охлаждение веществ с целью получения и практического использования температур, лежащих ниже 170 К. Г. о. обеспечивается рабочими веществами, критическая температура которых лежит ниже 0°С (273,15 К), — воздухом, азотом, гелием и др. Область Г. о. делится на три температурные зоны: первая — от 170 К до 70 К, вторая — от 70 К до 0,5К — обычно называется криогенной (греч. krэos — холод, -genes — рождающий), третья — сверхнизкие температуры (ниже 0,5 К).
        Г. о. осуществляют следующими способами: охлаждение газа при его дросселировании (см. ); расширение газа или пара с совершением внешней работы; адиабатическое размагничивание (см. ), последний способ используется для создания сверхнизких температур. Основное назначение Г. о. — и разделение газовых смесей. Важнейшее из них — разделение воздуха на составные части. Воздухоразделительные установки производят: технический кислород (О 2— 99,2, 99,5 и 99,7%), технологический кислород (O 2— 95%) и чистый азот (N 2— 99,998%). Различают 3 типа воздухоразделительных установок для получения: газообразного кислорода под атмосферным давлением, газообразного кислорода под повышенным давлением и жидкого кислорода или жидкого азота. Одновременно на установках, применяя соответствующие устройства, можно получать сырой аргон, первичный концентрат криптона, а также неоно-гелиевую смесь.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12