Современная электронная библиотека ModernLib.Net

Ракеты и люди (№3) - Ракеты и люди. Горячие дни холодной войны

ModernLib.Net / Научно-образовательная / Черток Борис Евсеевич / Ракеты и люди. Горячие дни холодной войны - Чтение (стр. 8)
Автор: Черток Борис Евсеевич
Жанры: Научно-образовательная,
История
Серия: Ракеты и люди

 

 


Не только высокие руководители, но и совсем зеленые молодые инженеры понимали, что мы создаем совершенно новое направление в космонавтике. Может быть, эти зашифрованные наименованием «Космос» спутники сегодня гораздо нужнее широко рекламируемых нашей пропагандой пилотируемых полетов. Не в далеком будущем, а сегодня, завтра, в ближайшие месяцы в ближайшие годы все точнее мы будем способны обеспечивать верховное руководство великой державы информацией, необходимой для принятия военно-политических и экономических решений, для долговременного планирования и для быстрого реагирования на критические ситуации в любом районе планеты.

— СП заставляет нас отдать жар-птицу, которую мы наконец-то поймали, — так высказался Юрасов, выражая общие эмоции.

Я как один из первых заместителей главного конструктора, внутренне соглашаясь с критикой его позиции, не имел права выступать против уже принятого им решения. Для укрепления «политико-морального состояния» я воспользовался представившейся возможностью провести «закрытый мальчишник», чтобы поговорить с товарищами начистоту.

Мое приглашение с нескрываемым энтузиазмом приняли Юрасов, Осташев, Козко, Башкин, Карпов, и, не могу точно вспомнить, было еще человека три-четыре, сильно недовольных передачей «Зенитов» в Куйбышев.

В домике № 3 на «двойке» я был «временно прописан» с Виктором Кузнецовьм, Василием Мишиным и Леонидом Воскресенским. Ни Кузнецов, ни Мишин, ни Воскресенский на этот раз не прилетели. Стартовая подготовка была поручена Шабарову. Оказавшись единственным жильцом, я пригласил товарищей провести вечер в домике за дружеским ужином. Стол был заставлен банками со шпротами, помидорами, огромным арбузом и бутылками нарзана. Совсем скромно выглядел графин с чистым спиртом.

Когда мы вдоволь наговорились, обсуждая ближайшие перспективы, и, запивая нарзаном, опустошили графин, Юрий Козко попросил разрешения воспользоваться гитарой Воскресенского.

— Перейдем от физики к лирике, — сказал Козко. У него оказался чистый и сильный голос.

Не напрасно дули ветры

Не напрасно шла гроза

Кто-то тайным тихим светом

Напоил мои глаза.

С чьей-то ласковости вешней

Отгрустил я в синей мгле

О прекрасной, но нездешней

Неразгаданной земле.

Не гнетет немая млечность

Не тревожит звездный страх.

Полюбил я мир и вечность,

Как родительский очаг…

Слова, мастерское исполнение, спирт — все вместе вызвало восторженные аплодисменты.

— У Есенина не было страха перед звездами и вечностью. Стоит ли вам расстраиваться из-за передачи «Зенитов», — сказал Козко и перешел к другому репертуару.

В те годы Козко, неукротимый в своих творческих поисках, не очень ладил со своим официальным начальством, открыто выступал против формально-бюрократических методов управления процессом научных исследований. Подчиненные его обожали, начальники побаивались его талантов, интриговали завистники.

Спустя тридцать три года я вспомнил тот вечер на полигоне, когда стоял у гроба доктора технических наук, профессора Юрия Анатольевича Козко.

После командных радиолиний Козко разрабатывал оригинальные методы радиолокационной разведки. Одним из первых он использовал широчайшие возможности, которые открывались при компьютерной обработке радиолокационных изображений. Вершиной его творчества была система точного наведения разводящихся головных частей боевых ракет по своим целям. Он разработал методику создания электронных цифровых карт местности. Такие необычные карты закладывались в память бортовых электронных машин. Бортовая машина, как штурман, сравнивала заложенную в память цифровую карту с местностью, которую под собой разглядывал бортовой радиолокатор.

Не сразу все получалось. И не раз Козко докладывал коллегии министерства, объясняя, что еще предстоит сделать и какие труднейшие проблемы решить, чтобы такая система навигации стала такой же штатной для ракет стратегического назначения, как оптический прицел для пушки. Он добился полного успеха и признания.

Но по договору ОСВ-2 американцы потребовали уничтожения именно тех разводящихся головных частей (РГЧ), которые были оснащены этой системой.

Потом начались реформы. Он лихорадочно искал пути для сохранения уникального коллектива, овладевшего радиоэлектронной техникой, обеспечивавшей важнейшую часть ракетно-ядерного паритета. Это оказалось много труднее, чем в недавнем прошлом создание самых сложных систем. Его сердце остановилось без многократных предварительных предупреждений.

Но вернемся в Тюратам. Испытания «Зенита-2» с сентября 1962 года проводились при активном участии молодых специалистов филиала № 3. Они погружались в совершенно новую область с таким увлечением, что истинные создатели «Зенита-2» убеждались: в Куйбышеве наш «Зенит-2» будет тоже любимым ребенком. Не обошлось и без горьких разочарований. Качество изображения после обработки пленки в «Байкале» и передачи по радио на Землю было низким. По предложению военных мы с четвертого летного «Зенита-2» сняли «Байкал» и вместо него установили два модернизированных фотоаппарата с фокусным расстоянием по одному метру. Таким образом, начиная с «Космоса-10» на борту устанавливали по четыре фотоаппарата. Три из них с фокусным расстоянием по одному метру производили съемку трассы шириной 180 км. Можно было производить съемку трасс сериями различной протяженности. С помощью программных разворотов можно было фотографировать районы, расположенные в стороне от трассы полета. Совместная обработка фотографий позволяла получать пространственное изображение местности, картографирование и точную фотографическую привязку.

В 1962 году было произведено пять удачных пусков «Зенита-2». Обработка разведывательной фотоинформации давала такие результаты, что умные военные в Генеральном штабе, не считаясь с тем, что, по нашим понятиям, продолжаются испытательные полеты, требовали увеличить частоту пусков. На заводах и полигоне подготовку и пуски уже перестали считать экспериментальными. Это была работа.

В начале 1963 года директор завода Турков попросил меня «для поднятия настроения на заводе» выступить у него на совещании начальников цехов и рассказать «в пределах допустимого» о результатах пусков в 1962 году и стратегическом значении «Зенитов-2».

После моего короткого сообщения, обращаясь к собравшимся, Турков сказал:

— Вы не забыли, как мы все работали во время войны. Теперь идет «холодная война». «Зениты» сейчас важнее пушек. Планом на 1963 год предусмотрен выпуск пяти штук. Серийный выпуск уже налаживает завод «Прогресс» в Куйбышеве. Мы с честью должны закончить важнейшую для страны работу. Считайте, что у каждого из вас нет более ответственного задания, пока точно в сроки по графикам не отправим на полигон эти объекты.

За три месяца 1963 года с марта по май мы осуществили четыре удачных пуска.

Двенадцатисуточный полет «Космоса-20» 18 октября 1963 года был последним в испытательной серии. Надежность космического разведчика и всех его систем была доказана.

С декабря 1961 года было пущено тринадцать «Зенитов-2». Из них десять выполнили свои задачи, три погибли по вине носителей. В сообщениях ТАСС наши космические разведчики были объявлены как «Космос-4, -7, -9, -10, -12, -13, -15, -16, -18, -20». Этап летно-конструкторских испытаний был закончен. Постановлением правительства 10 марта 1964 года «Зенит-2» вместе с ракетой-носителем и всем испытательным оборудованием был принят на вооружение.

Это был первый случай приема на вооружение сложного космического объекта. Менее двух лет продолжался цикл летно-конструкторских испытаний, и всего пять лет прошло с запуска первого в мире простейшего ИСЗ. Наши средства массовой информации присвоили американским космическим аппаратам разведки ярлык «спутник-шпион». Свои аппараты для всех видов разведки мы именовали «Космосами». Так же называли неудачно выведенные межпланетные аппараты и беспилотные «Союзы». Со временем отсчет ИСЗ программы «Космос», впервые начатый в 1962 году, перевалил за 3000 (ещё нет. Даже на 31.12.2001 только 2338. -Хл.). Так оказалось в результате искусственного объединения различных, не связанных между собой направлений с целью засекречивания.

Любой ИСЗ, пока он находится в космическом пространстве, не нарушает ничей суверенитет и не нарушает ничьих уголовных кодексов. Следовательно, он в принципе не может быть шпионом. Шпиона, проникшего с целью разведки на территорию чужой страны, можно арестовать и судить. Самолет — нарушитель границы воздушного пространства можно сбить, корабль, оказавшийся в чужих территориальных водах, можно потопить. ИСЗ по международному праву повредить или уничтожить нельзя! В космосе нет государственных границ. Один и тот же спутник имеет право проводить научные съемки извержений вулкана, ракетной базы, лесных пожаров, планировки городов и вести наблюдения за сотнями природных или хозяйственных объектов.

В 1963 году, реализуя обещание Королева сохранить за нами создание перспективного корабля-разведчика, мы начали интенсивную разработку проекта «Зенита-4». Предполагалось, что на космические разведчики новой серии будут установлены фотоаппараты с фокусным расстоянием до 3 метров. Было задано время автономного существования — не менее месяца. Существенное расширение тактических возможностей требовало создания принципиально новой экономичной системы ориентации и навигации. Расчеты проектантов, проводимые совместно со специалистами фоторазведки, привели к очень жестким требованиям по точности и этих систем. Новая система управления должна была обеспечивать: форсированные развороты в плоскости крена (плоскости, перпендикулярной плоскости орбиты) на углы до ±35 градусов и последующую трехосную стабилизацию в этом положении с сохранением заданной точности; в процессе полета вне тени Земли выставку солнечных батарей на оптимальные углы для наиболее эффективного освещения всей их площади.

Основные идеи и задания для смежных организаций исходили от Евгения Токаря, Владимира Бранца, Ларисы Комаровой, Станислава Савченко.

Наш традиционный смежник по гироскопической технике Виктор Кузнецов был пресыщен работами по боевым ракетам, и мне не удалось соблазнить его перспективой создания фантастического гирокомплекса.

— Попробуй в Ленинграде уговорить Гордеева и Фармаковского. Сейчас заказы для моряков сократились, может быть, ты их соблазнишь космической проблемой.

Фармаковскому я позвонил в Ленинград и напомнил о нашей довоенной деятельности. В 1936 году на заводе «Электроприбор» он разрабатывал векторный прицел для дальнего бомбардировщика ДБ-А. Тогда я убедил главного конструктора самолета Виктора Болховитинова лично побывать в Ленинграде и познакомиться с необычным прицелом. Этот прицел был разработан и установлен на первый опытный самолет ДБ-А. Его пришлось убрать при переделке самолета под арктический вариант для перелета в США через полюс. Об этом трагическом полете я писал в предыдущей книге.

Космический дебют Владимира Гордеева и Сергея Фармаковского закончился разработкой гироскопической системы «Сфинкс». Это была корректируемая по сигналам ИКВ система, в которую входили двухроторный гироорбитант и гирогоризонт. Уже в 1965 году «Электроприбор» поставил нам первый «Сфинкс» вместе со специальным трехосным стендом для моделирования и испытаний системы ориентации. К сожалению, стенд был вскоре заброшен. Воспроизвести это уникальное произведение гироскопической техники удалось только через 15 лет, когда возникла необходимость. В ОКБ «Геофизика» Борис Медведев для «Зенита-4» разработал сканирующую инфракрасную вертикаль с изменяющимся углом при вершине конуса сканирования для диапазона высоты орбит от 200 до 400 км.

Но самой революционной по тем временам новинкой были электродвигатели-маховики в качестве исполнительных органов прецизионной ориентации и электродвигатель программных разворотов. Эта постоянно действующая система создавала управляющие моменты, заменяя реактивные газовые двигатели малой тяги. Последние использовались только на начальном этапе успокоения объекта и для разгрузки электродвигателей-маховиков. До разработки «Зенита-4» электродвигателей-маховиков не существовало в природе. Старые друзья по еще довоенной электротехнике Андроник Иосифьян, Николай Шереметьевский и Наум Альпер увлеклись задачей силовой гироскопической стабилизации. Работа не была доведена до штатных образцов, но скачок от благих пожеланий к реализации одной из важнейших задач космонавтики был сделан. Во ВНИИЭМе — Всесоюзном научно-исследовательском институте электромеханики — сложился коллектив, который вскоре создал силовой гироскоп для спутника связи «Молния-1», шаровой гироскоп для «Алмаза», а затем те самые знаменитые на весь мир силовые гироскопы — гиродины, которые вот уже более десяти лет обеспечивают безрасходную ориентацию орбитального комплекса «Мир».

Работы по созданию системы управления «Зенита-4» в ОКБ-1 закончились в 1964 году выпуском технической документации и изготовлением технологических образцов. Королев настоял на передаче всего задела филиалу № 3. Надо отдать должное коллективу филиала, который стал Центральным специальным конструкторским бюро — головным разработчиком космических разведчиков: они не растеряли наш задел и очень бережно отнеслись к дружбе, которая у нас в те годы сложилась с основными смежными коллективами создателей первых космических разведчиков.

Заметным событием в истории «Зенита-4» была кандидатская диссертация по динамике управления, которую подготовила Лариса Комарова. Защита прошла блестяще. Первой женщине, защитившейся на ученом совете нашего Центрального конструкторского бюро экспериментального машиностроения (ЦКБЭМ) — так в то время называлось ОКБ-1, впоследствии знаменитое НПО «Энергия», пришлось исполнить последний аккорд в нашей работе над беспилотными спутниками-разведчиками. Ученую степень доктора наук и звание профессора Комарова получила за работы над системами пилотируемых космических кораблей. Так много лет спустя сработала политика Королева по разгрузке ОКБ-1 ради пилотируемых программ.

Современные космические разведчики, и наши, и американские, могут разглядывать Землю с разрешающей способностью, позволяющей регулировать уличное движение. «Американские ястребы» в разгар «холодной войны», отстаивая тезис о необходимости господства в космосе; похвалялись, что новейшие космические разведчики США уже позволяют определить число и величину звезд на погонах наших офицеров. Самое революционное в технике космической разведки последних лет — это возможность передачи цветного изображения в реальном масштабе времени. Великие достижения современной видеотехники ныне используются для контроля за самолетами на палубе авианосца, перемещением танков во время локальных военных конфликтов и положением тяжелых крышек шахтных пусковых установок стратегических ракет.

В кабинете генерального директора Российского научно-производственного центра НИИ «Электроприбор» члена-корреспондента Российской Академии наук Владимира Пешехонова профессор Фармаковский обратил мое внимание на висевший на стене огромный план Санкт-Петербурга. Это был подарок самарского ЦСКБ Петербургскому НИИ «Электроприбор». План был космическим снимком Санкт-Петербурга. На нем можно разглядеть буквально каждый дом.

Зная истинное положение дел в российских научных организациях, создавших поистине чудо-технику, позволяющую увидеть любой уголок земного шара, я со страхом подумал, неужели все это поглотит криминальный хаос российских реформ?

На общем собрании Российской Академии наук 29 октября 1996 года один из академиков поднялся на трибуну и зачитал проект обращения к президенту и правительству России.

Я цитирую последние два абзаца этого обращения:

«Необходимо четко понимать, что в XXI веке реальной независимостью и безопасностью будут обладать лишь государства, создающие и использующие собственные высокие технологии на основе мощной фундаментальной и прикладной науки.

Если сейчас политика в отношении науки не будет изменена, то суд истории будет однозначен и категоричен — эта политика будет заклеймена как преступная «. Как бы в подтверждение этого мрачного прогноза в 1996 году пресса[8] сообщила, что «28 сентября над южной частью Тихого океана сгорел в атмосфере российский разведывательный спутник „Космос-2320“. Он сгорел, отслужив свой срок. У России больше не осталось ни одного спутника оптико-электронной разведки. Между тем это единственное средство контроля за соблюдением договоренностей о стратегических вооружениях…

… Спутник разработан в самарском ЦСКБ «Прогресс». Разрешающая способность аппаратуры — несколько десятков сантиметров… Изображение получается в цифровом виде…

… Из-за финансовых сложностей Россия была вынуждена с лета этого года приступить к беспрецедентной продаже ЦРУ своих фотопленок из архивов Главного разведывательного управления…».

Ветераны космической разведки, читая подобные сообщения, вправе зарыдать подобно тому, как плакали разработчики «Зенита-2» после гибели первого аппарата в 1961 году.

1.6 ИСПРАВЛЕНИЕ ОШИБОК ВЕЛИКИХ

Начиная с 1946 года в США регулярно разрабатывались планы ядерного нападения на Советский Союз. Российский федеральный ядерный центр (ВНИИ экспериментальной физики), или Арзамас-16, приводит данные из публикации американских физиков о секретных планах ядерного нападения на СССР. В июле 1946 года планом Пентагона под кодовым названием «Pincers» («Клещи») предусматривалось применение 50 ядерных авиабомб по 20 городам СССР. В плане «Sizzle» («Испепеляющий жар»), принятом в 1948 году, предусматривалось уже применение 133 ядерных авиабомб по 70 городам СССР. Всего через год планом «Drop-shock» («Моментальный удар») эти цифры увеличивались до 300 авиабомб, сбрасываемых на 200 городов СССР. В декабре 1960 года Пентагоном был разработан и утвержден очередной план под кодовым наименованием «СИОП-62», предусматривавший ядерный удар по 3423 целям на территории СССР. СССР рассматривался как главный источник угрозы США и их союзникам.

В первой половине шестидесятых годов наш приоритет в космосе был неоспорим, но, несмотря на трудовой героизм коллективов Королева, Янгеля, Челомея, Макеева и присоединенных к ним смежных организаций и производств, отставание по боевым межконтинентальным ракетам прогрессировало.

Наша ракетно-космическая пропаганда, опираясь не только на внутренние восторги, но и на зарубежные авторитеты, преждевременно создала миф о нашем подавляющем ракетно-ядерном превосходстве. Только узкий круг ракетных специалистов не строил иллюзий по поводу действительного соотношения межконтинентальных ракетно-ядерных сил.

Наши опережающие успехи в космосе определялись отнюдь не общим экономическим и технологическим превосходством над США. На данном конкретном участке научно-технического прогресса нам удалось создать интеллектуальное, концептуальное и организационное преимущество в значительной мере благодаря инициативам и монопольному положению королевского ОКБ-1.

Эффектные космические сенсации были доступнее сознанию высшего политического руководства страны, чем спорные и сложные проблемы выбора конкретных средств стратегических вооружений. Во времена правления Хрущева ракетам был отдан бесспорный приоритет над всеми другими видами стратегических вооруженных сил. Но каким ракетам?

Справедливости ради надо признать, что американцы должны поделиться своими успехами шестидесятых годов в космосе с немецкими специалистами. Но той же справедливости ради надо признать, что с приходом эры крупносерийного производства межконтинентальных боевых ракет и ракет для подводных лодок американцы пошли своим путем. Здесь они на протяжении шестидесятых и первой половины семидесятых годов имели бесспорное преимущество.

Общее число установленных в шахтах межконтинентальных ракет к концу 1965 года в США достигло 850. Суммарная ядерная мощность зарядов составляла примерно 1000 — 1200 мегатонн. Учитывая надежность ракет того времени, СССР в 1965 году мог быть дважды уничтожен только американской ракетной техникой!

К этому времени наш возможный ответ не превышал суммарно 150 межконтинентальных ракет с общей ядерной мощностью (даже вместе с баллистическими ракетами подводных лодок) 250 мегатонн. Американские ракетно-ядерные стратегические наступательные вооружения превышали наши по меньшей мере в четыре раза! Если к этому добавить ядерные заряды стратегической авиации, то подавляющее превосходство достигало пяти-шести раз.

Изучение темпов количественного роста межконтинентальных стратегических ракет показывает ошибочность тезиса, что американцы рассчитывали на стратегическую авиацию и потому не придавали ракетам значения в той мере, как это было у нас. Возможно, что так и было, но до запуска нашего первого спутника, до 1957 года.

В США в 1957-1958 годах шло проектирование, с 1959 года — производство, и в 1961 начали поступать на вооружение ШПУ с твердотопливными ракетами «Минитмен-1». Уже к концу 1963 года на дежурстве в шахтах стояло 450 ракет! С 1963 года «Минитмен-1» постепенно заменяется более совершенной ракетой «Минитмен-2», а впоследствии еще более совершенной «Минитмен-3». Быстрыми темпами шло строительство и вооружение подводных лодок. В 1963 году на подводных лодках США находилось на вооружении 160 твердотопливных ракет «Поларис».

Кроме подавляющего количественного превосходства еще одним преимуществом американцев была точность. КВО у «Минитменов» при чисто инерциальной системе управления составляло от 1000 до 1500 метров, у «Поларисов» — 1600 метров. Наша Р-9А по согласованным тактико-техническим требованиям с использованием радиокорректирующей системы имела ошибку в три раза большую. Янгелевская Р-16 с чисто инерциальной системой была в два раза хуже «Минитмена». Американцы получили количественное и качественное превосходство, прежде всего, благодаря тому, что у них не было внутренних разногласий по поводу преимуществ или недостатков низко — и высококипящих топлив для боевых ракет. Янгель с пафосом утверждал, что Королев, увлекаясь кислородом, заводит нашу ракетную технику в тупик.

Теперь, ссылаясь на многолетний американский опыт, с таким же пафосом можно утверждать, что не только Королев, но и сам Янгель, а впоследствии и Челомей, если и не заводили ракетную технику в тупик, то пошли по неоправданно сложному пути.

Великие главные и генеральные Королев, Янгель и Челомей допустили одну общую ошибку. Первым понял и попытался ее исправить Королев.

Американцы неожиданно обошли нас там, где после войны мы считали себя самыми сильными. Мы по праву гордились «катюшами». Наши военные историки утверждали, что ни немцам, ни нашим союзникам не удалось во время и непосредственно после войны создать столь же эффективные реактивные твердотопливные снаряды на специальном нитроглицериновом пороховом топливе. Действительно, наши снаряды имели ракетные двигатели на твердом топливе (РДТТ) гораздо более простые, надежные и дешевые по сравнению с любым видом жидкостных.

Историю создания пороховых двигателей обычно начинают излагать с того, что РДТТ был вообще первым, нашедшим практическое применение в ракетной технике. Я не хочу повторять хрестоматийное повествование от китайских фейерверков до «катюши». Напомню только, что одна из проблем создания твердотопливных двигателей снарядов «катюши» заключалась в безвзрывном горении. Процесс горения стал стабильным в течение нескольких секунд после разработки технологии изготовления шашек диаметром до 150 — 200 мм. Этими порохами по праву гордились наши химики — специалисты по взрывчатым веществам. Но для ракеты, активный участок полета которой имеет длительность десятки или сотни секунд, они оказались совершенно не пригодными. Заряд, составляющий в твердотопливных ракетах единое целое с двигателем, в процессе горения не может охлаждать сопло, как это делает горючее в ЖРД. Интенсивность теплового воздействия продуктов сгорания на оболочку корпуса РД с большой продолжительностью работы достигает недопустимо высокого уровня. Кроме того, топливный заряд при длительном хранении или воздействии рабочего давления растрескивался, боковые поверхности заряда воспламенялись и температура была столь высока, что корпус прогорал. Заряды из стабильного бездымного шашечного пороха на специальных растворителях оказались хороши для ракетных снарядов, но совершенно не пригодны для больших ракет. Обычные РДТТ имели по сравнению с ЖРД низкий удельный импульс тяги. Со времен классических трудов пионеров ракетной техники считалась незыблемой истина, что твердое топливо — разновидности порохов — применяется в тех случаях, «когда требуется простой, дешевый, кратковременно действующий движитель[9]». Для ракет дальнего действия должно использоваться только жидкое топливо. Так продолжалось до начала 1950-х годов, пока лаборатория реактивного движения Калифорнийского технологического института не разработала смесевое твердое ракетное топливо. Это был совсем не порох. Общим с порохами являлось только то, что горючему не требовался посторонний окислитель — он содержался в составе самого топлива.

Смесевое твердое топливо, изобретенное в США, по своим энергетическим характеристикам намного превосходило все сорта наших порохов, применявшиеся в ракетной артиллерии. Мощная американская химическая промышленность с подсказки ракетчиков оценила перспективность открытия и разработала технологию крупномасштабного производства.

Смесевое твердое ракетное топливо представляет собой механическую смесь твердых мелких частиц окислителя, порошка металла или его гидрида, равномерно распределенных в органическом полимере, и содержит до 10-12 компонентов. В качестве окислителей применяются богатые кислородом соли азотной (нитраты) и хлорной (перхлораты) кислот и органические нитросоединения.

Основным горючим является металл в виде высокодисперсных порошков. Наиболее дешевое и распространенное горючее — порошок алюминия. Смесевые топлива даже при хорошо налаженной технологии остаются значительно более дорогими по сравнению с лучшими по энергетическим показателям жидкими компонентами.

При заливке в корпус ракеты формируется внутренний канал горения. Корпус двигателя дополнительно защищается от теплового воздействия слоем топлива. Стало возможным создание РДТТ со временем работы в десятки и сотни секунд.

Новая технология снаряжения, большая безопасность, способность смесевых топлив к устойчивому горению дали возможность изготавливать заряды больших размеров и тем самым создавать высокое значение коэффициента массового совершенства, несмотря на то, что удельный импульс тяги РДТТ даже у лучших смесевых рецептов существенно ниже, чем у современных ЖРД — жидкостных ракетных двигателей. Однако, конструктивная простота: отсутствие турбонасосного агрегата, сложной арматуры, трубопроводов — при высокой плотности твердого топлива позволяет создавать ракету с более высоким числом Циолковского.

Не только противоречия между Королевьм и Янгелем, но и последовавшая «гражданская война» — соревнование школ Янгеля и Челомея — могли иметь совершенно другой характер, если бы смесевое твердое топливо было освоено нашей промышленностью лет на пять раньше.

Первую попытку создать баллистическую ракету дальнего действия на твердом топливе предприняли в НИИ-4 в период 1955-1959 годов. В это время начальником НИИ-4 был генерал Соколов, а его заместителем полковник Тюлин.

Под руководством доктора технических наук Бориса Житкова была разработана твердотопливная ракета ПР-1 с дальностью 60-70 км. В 1959 году эта ракета была успешно испытана в Капъяре. НИИ-4 добился в 1959 году выпуска специального постановления Совета Министров на разработку пороховой управляемой ракеты ПР-2. При массе ракеты 6,2 тонны она была способна нести боевую головку массой 900 кг на дальность 250 км. Эта ракета была твердотопливным аналогом жидкостной Р-11, созданной королевским ОКБ-1.

В ходе работ над этими проектами были созданы рецептуры высокоэнергетических смесевых топлив, разработаны теплозащитные покрытия, эрозиостойкие материалы, разработаны управляющие поворотные сопла.

Однако инициатива ученых НИИ-4 не была поддержана ни промышленностью, ни самим Министерством обороны.

Королев понимал, что в соревновании с Янгелем и Челомеем ракета Р-9 и любые ее модификации проигрывают уже потому, что «высококипящие» ракеты хранятся в заправленном виде. Их готовность всегда будет выше. Нужен был детонатор — толчок для начала процесса выбора, поиска принципиально иного, третьего, пути.

Королев получил не один, а сразу три импульса, заставивших его первым из наших главных конструкторов и ракетных стратегов переосмыслить, изменить выбор, при котором стратегические ракетные вооружения ориентировались исключительно на жидкостные ракеты.

По разным причинам в исторических трудах по ракетно-космической технике и исследованиях творческого наследия Королева этой его работе уделяется несправедливо малое внимание.

Первым толчком к началу работ в ОКБ-1 над твердотопливными ракетами была обильно посыпавшаяся в начале 1958 года информация о намерении американцев создать новый тип межконтинентальной трехступенчатой ракеты. Не помню сейчас, когда мы получили первую информацию о «Минитменах», но, оказавшись по каким-то делам в кабинете Мишина, я был свидетелем разговора о достоверности этой информации. Кто-то из проектантов докладывал ему о соответствии полученной информации нашим тогдашним представлениям о возможностях твердотопливных ракет. Общее мнение оказалось единодушным: создать ракету стартовой массой всего в 30 тонн при массе головной части 0,5 тонны на дальность 10 000 км в наше время невозможно.

На том временно и успокоились. Но ненадолго. По дороге на Северный флот к нам заехал Виктор Макеев. Он был у Королева и Мишина, рассказывал о морских делах и проблемах, потом со своими управленцами зашел ко мне. Речь шла о нашей помощи в разработке более мощных рулевых машин. По этому вопросу мы быстро договорились. В конце встречи он сказал, что передал СП информацию об американской ракете «Поларис». Если это была не дезинформация, то получалось, что американцы имели возможность сразу вооружать свои подводные лодки твердотопливными ракетами, которые для морских условий куда как приятнее.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42