Современная электронная библиотека ModernLib.Net

Охота за кварками

ModernLib.Net / Чирков Юрий Иванович / Охота за кварками - Чтение (Ознакомительный отрывок) (Весь текст)
Автор: Чирков Юрий Иванович
Жанр:

 

 


Чирков Юрий Георгиевич
Охота за кварками

      Юрий Георгиевич Чирков
      ОХОТА ЗА КВАРКАМИ
      Серия "Эврика"
      Вот уже 20 лет кварки интригуют физиков. Эти выдуманные частицы многое объяснили и могли бы стать первоэлементами, из которых построен мир если бы их удалось обнаружить! О головоломных путях познания которыми идут ученые о фантастичности картины мира открывающейся их глазам, о новейших научных достижениях физики рассказывает доктор наук Ю Чирков. Издание рассчитано на самые широчие круги читателей
      Содержание
      Введение
      1. Элементарная неэлементарвоотэь
      2. Ядерное сафари
      3. В поисках простоты
      4. Сколько у природы законов?
      5. Гармония атомных сфер
      6. Блудные сыны науки
      7. Странности странного мира
      8. Слон в кастрюле
      9. Вселенная в электроне?
      10. Пирамиды XX века
      11. Инженеры торопят физиков
      Заключение
      Введение
      Они пристально вглядываются в будущее и ждут появления новой теории элементарных частиц, как юная Ассоль ждала принца на корабле с алыми парусами.
      Альберт Вейник
      В 1931 году чешский писатель Карел Чапек побывал в Голландии. В очерке "Знакомство с чужими странами"
      он писал: "В большинстве случаев нынешний путешественник проделывает в чужих странах, так сказать, обратный путь по истории. Начало его новым познаниям кладет центральный вокзал в столице; только после этого, постепенно, шаг за шагом он переходит к все более и более старинным предметам, как-то, скажем: кафедральные соборы, старинное искусство и амстердамское гетто, и только напоследок, в конце своих странствий, он открывает и голос самой страны, вроде мычания черно-белых коров или скрипа крыльев ветряных мельниц..."
      Физиков, как, впрочем, и ученых других специальностей (наука едина: деление ее на отдельные дисциплины произвольно и временно!), тоже можно было бы уподобить путешественникам, отправившимся в некую условную страну. Как назвать ее? Страна Логики? Мекка Смысла? Царство Основных Законов?
      И физики сначала различают в незнакомых краях лишь привычное, сходное с тем, что они оставили "дома"; и, как и обычные пилигримы, лишь постепенно начинают слышать "голос самой страны".
      И все же аналогия эта не совсем точна! В книге речь пойдет о физике микромира, а значит, о мирах, масштабы которых - и временные и пространственные - становятся тем меньше, чем далее "путник" отходит от родных пенатов. Он простирает руки к "Африкам" и "Америкам", которых и в микроскоп-то не различишь - ко всем этим гиперонам, нейтрино, мезонам... Какое уж тут мычание черно-белых коров!
      Гораздо лучше поиск физиков-ядерщиков сравнить с охотой. Но с охотой в особом, диковинном "лесу", заселенном невиданными чудищами и химерами, среди которых наиболее поразительны кварки.
      Вот уже 20 лет как кварки продолжают интриговать ученых. Они многое объяснили и могли бы стать первоэлементами, из которых построен мир, если бы... если бы их удалось обнаружить! И охота за ними продолжается.
      Как поймать африканского льва? Очень просто, шутят физики. Помещаем в заданною точку пустыни клетку, входим в нее и запираем изнутри. Затем производим инверсию пространства по отношению к клетке. Теперь лев внутри, а мы снаружи: лев пойман!
      И шутки эти под стать их работе. Они тоже охотники, только необычные. Буквально стреляют из пушек по воробьям - многокилометровые ускорители построены для ловли крошек-невидимок. Часто не знают, на какого зверя отправляются охотиться. Порой не ведают, что делать с уловом, который, кстати, может исчезнуть у них на глазах...
      О нетривиальности путей познания, которыми идут ученые, о фантастичности картины, открывающейся их глазам, о новейших научных приобретениях физики и будет рассказано в этой книге.
      1
      Элементарная неэлементарность
      Мы пошли на площадь ученых. О, сколько там было ссор, разборов, схваток и погони друг за другом! Редко тут у кого-нибудь не было тяжбы с кем-нибудь иным; не только молодые (что можно было Сы приписать незрелости), но и сами старики досаждали друг другу... Стоило кому-нибудь что-либо высказать, как другой тотчас шел на отпор, даже о снеге и то затевали спор: белый ли он, или черный, горячий ли, или холодный.
      Ян Амос Коменский. Лабиринт мира и рай сердца
      - Что ни сезон, то мезон, - любил подтрунивать над физиками-ядерщиками академик С. Вавилов. Дело было в конце 40-х годов.
      А в 1971 году член-корреспондент АН СССР Д. Блохинцев в беседе с журналистами рассказывал: "Когда я начинал работать в Объединенном институте ядерных исследовании в 1956 году, вот эта полка, где стоят отчеты о международных встречах физиков-атомщиков, была почти пустой. Теперь, как видите, она буквально забита материалами о конференциях, симпозиумах, семинарах.
      Открылась новая область исследований. Физики обнаружили целый мир элементарных частиц. Когда-то я сам для себя составлял таблицу таких частиц, и мне понадобился лишь один вечер. А сейчас это уже довольно сложная схема. Специальный международный центр выпускает сведения об элементарных частицах, и каждый год они составляют тетрадку объемом около 50 страниц. Но даже специалисты, работающие в этой области, не могут вполне точно ответить на вопрос: сколько же в данный момент известно элементарных частиц?.."
      Да, 10-15 лет назад под лавиной открытий оказался погребенным один из основополагающих для микромира терминов. Каждый год все более увеличивал группу "элементарных частиц". Открытия все новых и новых членов этой чересчур многочисленной семейки становились почти будничным делом, волнующим разве что узкий круг специалистов. Все это в конце концов не могло не привести к девальвации эпитета "элементарный". Так, уже в который раз подверглась сомнению с таким трудом ставшая достоянием большой науки идея атомизма.
      Демокрит
      Если взять какое-нибудь достаточно массивное тело и начать его дробить, получатся части, обладающие теми же свойствами, что и исходное тело. Тривиальная вроде оы мысль!
      Но возьмем мяч, утюг, сковородку и разрежем, разломим их хотя бы пополам. В руках у нас окажутся полумячи, полуутюги, полусковороды - вещи, явно лишенные своих изначальных качеств. Предметы настолько же аосурдные, как, скажем, полтора дровосека.
      Еще один образ. В рое пчел мы издали не видим отдельных насекомых. Все пчелы сливаются для нас в одну сплошную пчелиную тучу. Но это не значит, что пчел нет. И ясно также, что, вознамерившись разъять отдельных пчел на составляющие, мы вновь получим те же полсковороды.
      Мораль? Дробление роя, так же как и дрооление любого физического тела, имеет смысл проводить лишь до некоторого предела. Вот так, естественным образом, и возникает в сознании идея атомизма.
      Наиболее отчетливо это учение сформулировал один из величайших философов древности, грек Демокрит (жил в 460-370 годах до новой эры).
      Демокрит учил: все состоит из невидимых для нас крошечных частичек, настолько малых, что меньшего и представить невозможно. Эти частички Демокрит назвал атомами, что по-гречески значит "неделимые".
      Атомы, вызывая в нас ощущение сладкого, горького, белого, черного, сами не могут быть подвержены какимлибо действиям извне. Они неразрушимы, неизменяемы, вечны и могут только комбинироваться в самых разных сочетаниях. Чем же отличаются различные атомы меж собой? тт Четкого ответа Демокрит, естественно, не мог дать. И тут он поневоле вступал на шаткий путь догадок и домысла.
      Атомы воды, полагал Демокрит, круглы и гладки. Оттого-то вода текуча и не имеет определенной формы. Атомы огня колючи - потому и жжет огонь так больно.
      Атомы земли грубы и зубчаты - в результате соединенные вместе, они и образуют тяжелую и стабильную субстанцию.
      Демокрит допускал, что атомы имеют разные размеры. И есть среди них и более тяжелые, и оолее легкие.
      Различаются они и формой. Должны существовать атомы крючкообразные, якоревидные, шероховатые, угловатые, изогнутые - иначе они не сцеплялись бы друг с другом.
      Любопытно, что, хотя Демокрит считал атомы неделимыми физически, он допускал у них мысленное выделение частей. И в самом мелком атоме были и верх и аиз, и левое и правое, и переднее и заднее, и середина.
      Демокрит был настолько атомистом, что даже душу человеческую представлял состоящей из атомов - огненных, тонких, круглых и гладких. После смерти человека они разбредаются по Вселенной в разные стороны. Таким образом, Демокрит в бессмертие не верил.
      И боги, полагал этот философ, также являют собой лишь комбинации атомов!
      Когда поминают славное имя Демокрита, само собой в сознании возникает слово "атом". Но то, что он гениально выделил еще одну важнейшую сущность бытия, остается как-то в тени. А ведь Демокрит ввел понятие "вакуума", или пустоты, которое так интересует и интригует самоновейшую физику.
      Атомы Демокрита немыслимы без пустоты. Она является основным условием движения атомов. В ней совершают свои замысловатые "танцы" атомные "вихри"; соединяются, сближаясь, в тела и отталкиваются, приводя к распаду и разложению. Так что материя есть не только атомы, но и пустота. И второе обстоятельство не менее важно, чем первое.
      Вот этой тонкой диалектики Демокриту уже при его жизни многие никак не могли простить. А главным оппонентом Демокрита стал не менее великий философ древности грек Аристотель (384-322 годы до новой эры).
      Если Демокрит был убежден в дискретности материи, в возможности (хотя бы мысленной!) разъять ее на отдельные части, блоки, то Аристотель проповедовал обратное - абсолютную непрерывность, сплошность материи, отсутствие в ней каких-либо пропусков или пустот.
      Мир Аристотеля до отказа заполнен, набит веществом. В нем нет ни одной даже самой ничтожной щелочки.
      Поэтому-то у Аристотеля нет ни пустоты-вакуума, ни мельчайших неделимых частиц-атомов, которые бесконечно падают, снуют, мчатся в этой пустоте.
      Кто же прав? Демокрит? Аристотель? Этот спор, начатый великими греками, проходит сквозь всю двухтысячелетнюю историю естествознания. Не закончен он (мы убедимся в этом позднее, когда разговор пойдет о свойствах вакуума) и по сей день. И непохоже, чтобы он был разрешен в ближайшем будущем.
      Диспут в Париже
      Учению Аристотеля ы повезло, и нет. Его подняла на щит, сохранила для потомков, пригладила, отшлифовала, канонизировала церковь. Но она же и выхолостила это учение, убила в Аристотеле все живое и ценное, увековечив мертвое, догматическое. В. И. Ленин в одной из своих философских работ писал, что из Аристотеля в дальнейшем "сделали мертвую схоластику, выбросив все поиски, колебания, приемы постановки вопросов".
      Имя Аристотеля, как и святое распятие, душило все новое, прогрессивное, живое. Наука смогла возродиться после тысячелетнего застоя лишь в XV-XVI веках в тяжелой борьбе со средневековой схоластикой церкви, поддержанной авторитетом Аристотеля.
      Возродить взгляды Демокрита, дать им достойное место в науке пытался яркий представитель науки Возрождения английский философ Ф. Бэкон (1561-1626). Барон Веруламский, виконт Сент-Олбанский, лорд - хранитель печати, лорд-канцлер, занимавший важные посты, Ф. Бэкон основной целью своей жизни ставил работу над планом "Великого восстановления наук", освобождения их от схоластических пут церковной догматики.
      В многочисленных трудах (главный из них - "Новый органон") Ф. Бэкон выковывал истинно научный метод исследований. Эмпириков, ограничивающихся только опытом, он сравнивал с муравьями, суетливо переносящими тяжести; догматиков, строящих системы силой одного только разума, уподоблял паукам, ткущим из себя паутину; настоящий ученый, считал Ф. Бэкон, должен быть подобен пчеле, собирающей сок из растений (эксперимент) и затем перерабатывающей его в мед своими силами (интеллект).
      (Сейчас подобные взгляды могут показаться тривиальными и наивными. Но не следует забывать, что высказывались они в темные годы средневековой схоластики, когда в публичных диспутах в Сорбонне решался, скажем, вопрос о том, сколько же чертей может уместиться на острие иглы!)
      Анализируя причины заблуждения разума, Ф. Бэкон указывал на четыре ложные идеи-"призрака", или "идола": "призрак рода" - очеловечивание природы; "при"
      зрак пещеры" - ошибки, связанные с индивидуальными особенностями и недостатками человека-исследователя; "призрак рынка" - некритичное отношение к широко распространенным в обществе мнениям; "призрак театра" слепая вера в авторитеты и традиционные догматические системы.
      Понятно, что Ф. Бэкон пытался всячески восстановить, оживить все здоровые идеи прошлого, все ценные мнения древних мыслителей, придавленные авторитетом оскопленного церковью Аристотеля. Поэтому он открыто противопоставляет Демокрита "говорунам" Платону и Аристотелю и ставит своей задачей воскресить атомистику Демокрита, преданную незаслуженному забвению.
      В "Новом органоне" Ф. Бэкон пишет: "Варвары обрушились на Римскую империю, как наводнение, причем корабль науки был разбит в щепы. Философия Аристотеля и Платона, подобно обломкам из более легкого и пустого материала, была волнами времени сохранена до нас... Но что касается более древних из греческих ученых - Эмпедокла, Анаксагора, Левкиппа, Демокрита...
      то их произведения... были уничтожены в потоке времени. Ведь время как река: более легкое и пустое внутри оно донесло до нашего времени, более тяжелое, веское погрузило на дно".
      Увы! До полной реабилитации атомистики Демокрита должны были пройти еще долгие годы. Церковь зорко следила за инакомыслящими и жестоко карала их. Свидетельством этому служат многие факты истории. Один из них приводит в своих работах о Демокрите советский историк С. Лурье.
      В августе (24 и 25) 1624 года французскими учеными в Париже был назначен публичный диспут с целью опровергнуть Аристотеля. Четырнадцатый тезис программы провозглашал атомистическую концепцию. В программе говорилось также, что Аристотель по невежеству или, что еще вероятнее, по недобросовестности высмеял учение, по которому материя состоит из атомов... Руководители диспута обещали защищать этот тезис с крайней решимостью и неустрашимостью. Слово "неустрашимость" не было пустой риторикой или научным кокетством: в момент открытия диспута один из его устроителей, де Клав, был арестован, а другому, Виллону, удалось скрыться. Карающая десница действовала.
      Парламент постановил: запретить диспут; торжественно и публично изорвать объявленные тезисы; всех зачинщиков этого дела выслать в 24 часа из Парижа с запрещением въезда в Парижский округ; запретить преподавание изложенных в тезисах взглядов, содержащих полемику со старыми и общепризнанными авторитетами, во всех французских университетах. Конец указа был крайне суров: всякому, кто устнс или печатно осмелился бы выступить с такой полемикой, грозила смертная казнь.
      Так, авторитет Аристотеля (а ведь его можно по праву считать одним из отцов науки!) был приравнен к авторитету Евангелия!
      Дальтон
      Истинное возрождение атомистики началось в начале XIX века. В 1802 году английский физик (изучая газовые смеси, он открыл закон парциального давления газов, 1801 год) и химик Д. Дальтон (1766-1844) нашел, что основные факты химии получили бы лучшее объяснение, если считать, что каждый химический элемент можно представить себе в виде мельчайших, далее неделимых частиц. Каждому элементу, полагал Д. Дальтон, соответствует свой тип частиц, а их всевозможные комбинации и образуют все изучаемые химией вещества.
      Повторяя Демокрита, Д. Дальтон назвал эти частицы атомами.
      Многие факты научной карьеры и научных достижений Д. Дальтона, несомненно, обусловлены особенностями его биографии и его личными свойствами.
      Сын бедного ткача, он вынужден был ограничиться самообразованием, хотя и стал в 1822 году членом Лондонского королевского общества, а средства к жизни находил, давая частные уроки по химии и математике. Все это не могло не способствовать самостоятельности и независимости научных суждений Д. Дальтона.
      Играло здесь, видно, роль и то, что был он из семьи квакеров. Эта религиозная секта трясунов (английское слово quakers буквально означает "трясущиеся") отвергала официальную церковь и ее каноны. Челсвек, считали къакеры, без посторонней помощи и посредников сам может вступить в непосредственный контакт с всевышним.
      Особенностью Д. Дальтона было еще и то, что он первым описал цветовую слепоту (дальтонизм, дефект зрения у людей, заключающийся ь смешении красных цветов с зелеными и синих - с фиолетовыми и пурпурными). И одновременно сам же страдал этим недостатком.
      Злые языки утверждали по этому поводу, что цветовая слепота Д. Дальтона очень мешала ему при проведении химических опытов: ведь химик должен быть способен следить за цветовыми изменениями в ходе химических реакций. Злословили: это-де и является одной из причин, почему Д. Дальтон был довольно неуклюжим и неряшливым экспериментатором.
      Однако оставим эти замечания на совести дотошных биографов. Вопреки своим недостаткам - а может быть, благодаря им - этот учитель из Манчестера в 1808 году стал автором первого тома капитальнейшего труда "Новая система химической философии" (третий том вышел в 1827 году), где был всесторонне обоснован атомизм химических превращений.
      В этом труде Д. Дальтон ввел и свою систему химических обозначений.
      Химики древнего мира и средних веков для обозначения веществ использовали в основном символы. Так, когда-то семь главных металлов изображали астрономическими знаками семи небесных сретил: Солнце (золото), Лупа (серебро), Юпитер (олово) и так далее.
      Д. Дальтон предложил обозначать атомы химических элементов кружками, внутри которых помещались точки, черточки, начальные буквы английских названий металлов. К примеру, водород был обозначен как кружок с точкой внутри - 0, кислород - пустой кружок О азот - (+ , углерод - ф... Эта нотация в дальнейшем не прижилась, позднее атомы элементов стали обозначать начальными буквами их латинских и греческих названий.
      Атомистические взгляды позволили Д. Дальтону рассчитать атомные веса различных элементов (за единицу он взял легчайший атом водорода). Однако ученый при этом ошибочно руководствовался "законом наибольшей простоты": атомы элементов, полагал Д. Дальтон, должны вступать в соединения между собой в простейших отношениях. Поэтому известная школьникам химическая формула молекулы воды Н20 по Д. Дальтону имела вид О Т - Молекула аммиака - QO (вместо верной формулы КН3). (Хотя Д. Дальтон уже умел отличить окись углерода СО, он обозначал ее Оф, от углекислого газа со2-ООФ).
      Д. Дальтон вернул атомистике ее заслуженное место в науке. Взгляды ученого, хотя и не сразу, нашли понимание и признание. Немудрено, что сам он был атомистом до мозга костей (демокритнее Демокрита!). Для него, по свидетельству одного из биографов, атомы - ученый представлял их в виде упругих шариков - были такой же реальностью, как если бы он видел их наяву собственными глазами, трогал руками. "В своем воображении, - пишет биограф, - он видел в воздухе атомы кислорода, азота и водяного пара. Он рисовал их на бумаге..."
      Неделимое - делимо!
      Атомистика торжествовала. Многообразный мир оказался сработанным примерно из сотни типовых блоков - атомов, или элементов. Однако в самом конце прошлого века, как бы издеваясь над успехами атомной теории, была открыта еще одна частица. Для нее в таблице Менделеева отдельного места уже не нашлось!
      Приблизительно к 70-м годам прошлого века среди физиков все более крепло убеждение в том, что точно так же как все вещества составлены из крошек атомов, так и поток электричества должен быть сформирован из очень малых дискретных порций - элементарных зарядов.
      К открытию электрона - а именно о нем пойдет дальше речь - причастны многие выдающиеся ученые, но последнюю точку в этом деле поставил английский физик, член Лондонского королевского общества Дж. Томсон (1856-1940).
      Объектом изучения для Дж. Томсона стали катодные лучи. Они возникают при прохождении электрического разряда через сильно разреженные газы. Какова природа лучей? Ученые долго бились над этим. Много лет исследованию этого явления посвятил и английский физик У. Крукс (1832-1919). Он обнаружил: эти лучи искривляют свой путь в магнитном поле; их отталкивают отрицательно заряженные тела; распространение этих лучей прямолинейно; если на пути лучей поставить какой-либо объект, то за ним довольно отчетливо наблюдается тень...
      Как же правильно истолковать все эти факты?
      После долгих раздумий У. Крукс в конце концов уверился: катодные лучи вовсе не излучение, как полагало тогда большинство физиков, они представляют собой летящие в одном направлении с огромными скоростями отрицательно заряженные частицы.
      Укрепившись в этой истине, ученый стал убеждать других. Он начал говорить об особом состоянии материи.
      Об ультратазе, о чем-то, что напоминает разреженный и неосязаемый газ, если сравнивать его с жидкостью.
      Эти заявления были восприняты научной общественностью с понятным холодком и сдержанностью. Кое-кто был настроен даже враждебно.
      По все это не охладило пыла У. Крукса. В 1874 году он прочел в Шеффилде доклад под названием "Лучистая материя, или Четвертое состояние вещества". Ученый настаивал: катодные лучи - это "осколки" атомов, и атомы нельзя считать "неделимыми" так буквально, как это понимали Демокрит и Д. Дальтон.
      Ересь? Подрыв основ? Многие так это и восприняли.
      Были даже и такие оппоненты, что просто считали У. Крукса сумасшедшим. Кстати, как правило, склонные к материализму физики имели весомые основания относиться к взглядам У. Крукса с подозрением: ведь он был убежденным и открытым сторонником... спиритизма. Известно, что критика спиритических "исследований"
      У. Крукса была дана Ф. Энгельсом в статье "Естествознание в мире духов".
      Но удивительно, в вопросе о природе катодных лучей и об атомизме вообще Крукс-спирит оказался прав. Его правоту подтвердила серия классических работ, выполненных Дж. Томсоном и его сотрудниками. Эти исследования и привели к открытию электрона.
      Дж. Томсон заставил катодные лучи падать на поставленную вертикально к ним фотографическую пластинку.
      Затем он включил электрическое и магнитное поля. Они искривили траекторию лучей (одно изгибало лучи в горизонтальном, другое - в вертикальном направлениях). Эти смещения следов на фотопластике определялись скоростью движений лучей v и отношением их заряда к массе -е, т. Измерив горизонтальные и вертикальные смещения следа, Дж. Томсон смог написать два уравнения с двумя неизвестными v и" ",. Оставалось лишь решить эту систему, что Дж. Томсон и сделал.
      Результат этих почти школьных упражнений оказался революционным для физики. Получилось (более поздние опыты), что масса у электронов (корпускул, составляющих катодные лучи) в 1837 раз меньше, чем масса самого легкого и мелкого из атомов - атома водорода.
      Дробление материи зашло ниже атомных размеров!
      Год 1897-й считается годом открытия электрона - первой элементарной частицы - и началом совершенно новой эры в атомизме. Это выдающееся достижение Дж. Томсона было увенчано Нобелевской премией по физике (1906 год). У себя на родине ученый был удостоен высших почестей: в 1908 году Дж. Томсон был торжественно возведен в рыцарское достоинство - получил титул knight. И посмертно ему была оказана высокая честь: он был похоронен в Вестминстерском аббатстве рядом с останками И. Ньютона.
      Начало XX века оказалось для физики трудным временем. Наконец-то были получены реальные доказательства правоты Демокрита и Д. Дальтона: атомы перестали быть фикцией. Но одновременно одним махом физики расправились и с идеей неделимости атомов, добровольно поставив крест на старых, довольно удобных представлениях.
      Из пушек - по воробьям
      Удивительно, как быстро освоили физики новые понятия.
      Еще вчера они отрицали электрон, а сегодня (первые годы XX века) начали подыскивать для него местечко внутри атома.
      Ход рассуждений был таков. Атомы электрически нейтральны. Если в них содержатся электроны, то там должны быть запрятаны и еще какие-то положительно заряженные сущности, которые нейтрализовали бы суммарный отрицательный заряд электронов. Отсюда естественным путем и возникла первая модель атома - модель "пудинга с изюмом". Ее предложил в 1903 году все тот же Дж. Томсон.
      По Дж. Томсону, атом представлял собой положительно заряженную сферу с вкрапленными в нее (как изюм в пудинге) незначительными по размеру - в сравнении с атомом - электронами. Предполагалось, что силы притяжения положительно заряженной сердцевины атома уравновешиваются силами их (электронов) взаимного отталкивания.
      В те же годы были выдвинуты и другие представчения о структуре атома.
      В 1901 году французский физик Ж. Перрен (1870- 1942) в статье "Ядерно-планетарная структура атома"
      рассуждал о том, как электроны-планеты кружатся по орбитам вокруг положительно заряженного ядра-Солнца.
      Ж. Перрен был известным популяризатором науки (его книга "Атомы", 1913 год, стала классической и воспитала не одно поколение). Образы, сравнения давались ему легко; модели, аналогии быстро соскальзывали с кончика его пера. Гораздо труднее было обосновать, экспериментально доказать правильность тех пли иных моделей.
      Спор Дж. Томсона и Ж. Перрена решил опыт. Физики прибегли к средству, которое впоследствии принесло им столько побед - они занялись атомной стрельбой по атомным же мишеням. Руководил этой пальбой Э. Резерфорд (1871 - 1937).
      Сын шотландца, эмигрировавшего в Новую Зеландию и ставшего там фермером, Э. Резерфорд поступил в Новозеландский университет. Еще студентом заинтересовался он беспроволочным телеграфом и построил детектор электромагнитных колебаний. Это дало ему право на поездку в Англию в Кавепдншскую лабораторию, которой руководил Дж. Томсон.
      Момент был драматическим. Э. Резерфорд был вторым кандидатом. Английским стипендиатом мог стать и не он.
      Однако - к великому счастью дтя пауки - первый претендент решил жениться и остаться в Новой Зеландии.
      Рассказывают, что эти новости настигли Э. Резерфорда, когда он выкапывал картошку на ферме своего отца.
      Отбросив лопату далеко в сторону и заявив: "Это последняя картошка, которую- я выкопал", Э. Резерфорд отложил свою собственную женитьбу - он был помолвлен - и уехал в Англию.
      Дж. Томсон вскоре вполне оценил громкий голос, не очень вежливые манеры новичка и его (сам метр был неважным экспериментатором) очень ловкие в работе руки.
      Первые исследования Э. Резерфорд а были посвящены радиоактивности. Именно он дал название альфа (а)-, бетта (р)- и гамма (у) -лучам, ввел период полураспада радиоактивных элементов, доказал, что альфа-лучи представляют собой ионизованные (лишенные двух электронов) атомы гелия.
      Э. Резерфорд действовал в науке стремительно и плодотворно. В 1908 году он был удостоен Нобелевской премии, но не по физике, а по химии. Ученый негодовал, возмущался: он был физиком, что называется, с головы до ног и старался совсем не совать свой нос в химию.
      И вдруг такое!.. И если его что-то и утешало, так это быстрые успехи в атомной стрельбе.
      С 1906 года лорд Нельсон (позднее, в 1931 году, за научные заслуги Э. Резерфорд получил этот громкий титул), действующий совсем в духе прославленного английского флотоводца, организовал систематический обстрел атомов. Снарядами были а-частицы, мишенью - металлические экраны из фольги.
      Результаты этих исследований вскоре потрясли научный мир, хотя все это было похоже на стрельбу из пушек по воробьям!
      Действительно, подавляющее большинство атомных снарядов с легкостью пролетало сквозь толстенный слой золотой фольги (толщиной в несколько тысяч атомов), как если бы она была прозрачной, и регистрировалось на фотопластинке, помещенной за экраном. Следовательно, атом в целом представляет собой весьма рыхлое образование с множеством пустых областей. (Так ученик опроверг модель своего учителя Дж. Томсона.)
      Однако, к удивлению Э. Резерфорда, отдельные а-частпцы искривляли свою траекторию заметным образом.
      Некоторые даже поворачивали назад! "Как если бы я увидел 16-дюймовый снаряд, отскочивший от листа газетной бумаги" - так комментировал свои опыты экспансивный Э. Резерфорд. Он же дал и верную интерпретацию этому явлению. Вывод мог быть только один: частицы-пробники сталкивались с чем-то очень массивным, непроницаемым и заряженным положительно.
      Так Э. Резерфорд в 1911 году открыл у атома ядро.
      Атомно-артиллерийские залпы раздробили-таки атом, подтвердив верность планетарной модели Ж. Перрена.
      Атом теперь можно было разбирать на части: ядра и электронные оболочки. И еще в атоме было преизобилие пустоты, того вакуума, о котором первым заговорил Демокрит.
      Электроны способны перемещаться относительно ядра.
      Они "размазаны" по пространству. Потому-то атомы и выглядят твердыми материальными образованиями. Но все это видимость, мишура. Легко показать, что пустота отвоевала себе в атоме львиную долю объема.
      Размер атома 10^-8 см, его объем 10^-24 см3. Те же величины для ядра (следствие опытов и расчетов Э. Резерфорда): 10^-12 см (размер ядра) и 10^-36 см3. Так что на долю ядра в атоме приходится только 10^-36/10^-24 = = 10^-12 часть (!), где и сконцентрировано 99,9 процента всей массы атома.
      Так вакуум еще раз, и очень весомо, напомнил о себе.
      "Зоологический" период
      Две тысячи лет понадобилось науке, чтобы удостовериться в том, что все вещества состоят из молекул. Еще через 200 лет ученые низвели молекулы до атомов, разъяв и их на составляющие. А всего примерно 20 лет спустя они осознали, какое скопище частиц скрывается под атомной оболочкой.
      В 1914 году Э. Резерфорд подверг обстрелу электронами водород. При этом нейтральные атомы становились положительно заряженными. Ученый отождествил их с положительным зарядом, находящимся согласно ядернопланетарной модели Ж. Перрена в центре атома водорода. Так был открыт протон. Имя ему дал Э. Резерфорд.
      Дальше - больше: в 1930-1932 годах тот же лихой артатомообстрел выбил из недр ядра новую частицу - нейтрон (он подобен протону, но лишен заряда, "нейтрум" по-латыни значит "ни то, ни другое"). Тогда же (1932) советский физик Д. Иваненко выдвинул гипотезу - она вскоре была подтверждена и общепринята, - что все атомные ядра состоят из протонов и нейтронов.
      Наконец-то смысл таблицы Менделеева стал абсолютно ясен. Количество протонов в ядре и равное ему количество электронов на орбитах определяет тип атома, его точное место в таблице Менделеева. Суммарное же количество протонов и нейтронов в ядре обусловливает атомную массу.
      На радостях физики собрались за праздничным столом. Однако заздравные тосты - славили стройность картины мироздания! - то и дело прерывали все новые и новые сообщения об открытии нежданных, казалось бы, даже лишних, непрошеных элементарных частиц.
      Этот "бум" открытий требовал все новых имен. В спешке частицы сылп называть просто буквами. Так возникли А-частицы, Z-частицы и многие другие.
      Позитрон, нейтрон, мю-, пи-, ка-мезоны, дельта-барионы, омега-гипероны, антипротон, антинейтрон, кси-минус-гиперон, анти-снгма-мииус-гиперон, многочисленные резонансы, о которых ученые долго спорили, считать ли их за элементарные частицы или нет, семейство пси-частиц...
      Получилось, что в шутливом лозунге из фильма М. Ромма "9 дней одного года" (А. Баталов и И. Смоктуновский играли в нем физика-экспериментатора и физика-теоретика) - "Откроем новую частицу в третьем квартале!" - был вполне реальный смысл. Ведь примерно за 30 лет, считая с послевоенного 1945-го, в среднем в мире открывали одну частицу в месяц!
      Было отчего сойти с ума. Демографический взрыв народонаселения на планете сопровождался "демографическим взрывом" и в ядерной физике. Число элементарных частиц достигло к 1974 году двух сотен - примерно в два раза больше, чем элементов в таблице Менделеева!
      Раздраженные, огорченные неудачей многочисленных попыток как-то систематизировать ораву элементарных частиц, навести тут хотя бы относительный порядок, физики назвали это смутное время "зоологическим" периодом. (Об этой черной полосе ядерной физики и вспоминал в начале этой главы Д. Блохинцев.)
      В те времена какой-то весельчак подсчитал, что с 1911 года число элементарных частиц удваивалось каждые 11 лет (средний период солнечной активности!). Он же отметил, что точно так же (лишь немного медленнее, всего на 1 процент) растет и численность физьков. Но тогда получалось (задача на сложные проценты), что через 13 тысяч лет на Земле будет ровно столько физиков, сколько открыто будет к тому времени элементарных частиц. И каждый физик станет специализироваться на своей собственной частице, и каждый будет прославлен.
      Но ученые смеялись сквозь слезы: "элементарными"
      можно назвать три, пять, ну, десяток микрообъектов, не больше! Счет же на сотни означал одно: физика элементарных частиц переживает кризис. Теперь необходимо было уже не открывать новые частицы, а "закрывать"
      старые.
      Джойс
      А теперь стоит немного рассказать о человеке, который, не будучи физиком и совершенно не помышляя об этой науке, тем не менее оказался с нею связанным и даже помог дать название этой книге. Речь пойдет об ирландском писателе Д. Джойсе (1882 - 1941).
      Родился он в Дублине, столице Ирландии, где также появились на свет О. Уайльд, Б. Шоу, поэт Б. Иитс.
      Окончив Дублинский университет, в 1904 году Д. Джойс навсегда покинул родину, жил в Италии, Швейцарии, Париже.
      В творчестве Д. Джойса нас будет интересовать лишь его последний роман - "Поминки по Финнегану", с подзаголовком "Жизнь человека ночью", которому он отдал 17 лет труда (тяжелого еще и потому, что зрение писателя катастрофически ухудшалось). Публиковался роман по частям в журналах под названием "Работа движется", окончательно увидел свет в мае 1939 года.
      Содержанием этого произведения стали сновидения центрального персонажа Ируикера, хозяина одного из дублинских трактиров. Он засыпает после тяжелого субботнего вечера в своем заведении, где продавал посетителям пиво и виски.
      Сон трактирщика - повод для Д. Джойса средствами сна проиграть всю предысторию и историю человечества, которая, по его мненпю, кругообраана, циклична и потому не имеет ни начала, ни конца.
      Роман отличается характерной для сна непоследовательностью, провалами в цепи развития событий, необыкновенными превращениями: так, четыре стены в спальне Ируикера говорят голосами четырех евангелистов, мертвые воскресают и т. д.
      Здесь много комических эффектов, буффонады, ирландского фольклора. В частности, в романе использована баллада, где поется о Тиме Финнегане, каменщике, который упал со стропил и разбился насмерть. Друзья стали справлять по нем поминки. Но кто-то из них разбил бутылку виски, брызги попали в лицо Тиму, он ожил и пустился в пляс...
      "Поминки по Финнегану" окончательно утвердили за Д. Джойсом (в западной критике) репутацию самого дерзкого писателя-экспериментатора. Особенно хвалят язык романа.
      Д. Джойс полагал, что язык сновидения должен быть универсальным, поскольку во сне-де человек переступает национальные и языковые границы. Посему писатель собрал все европейские языки и попытался слить их воедино.
      Как при строительстве Вавилонской башни, в романе царит смешение всех наречий, есть следы и русского языка - в реке Лиффи полощут белье pratschkats (прачки). Мелькают в тексте и модные слова: тоталитарный, наци, гестапо.
      Один комментатор Д. Джойса заметил, что язык романа мог бы пригодиться в ЮНЕСКО в момент какой-нибудь невообразимой суматохи.
      Неудивительно, что книга ни разу не была переведена полностью. Более того, даже по-английски роман нельзя читать без специальных "ключей" объемистых книг, в которых текст расшифровывается как криптограмма.
      Есть идеалисты, которые читают этот роман вот уже добрые десятки лет в надежде найти его разгадку. В США, где Д. Джойс особенно популярен, выходят огромные статьи, которые порой посвящены истолкованию лишь одного какого-нибудь абзаца романа.
      Д. Джойс добился своего - он полностью оборвал связи между писателем и читателем. О романе не стоило бы так подробно говорить, если, на удивление, его дух, весь строй не были бы столь созвучны тому, что ныне происходит в физике микромира.
      Вольтеровский Микромегас полагал: чем тело меньше, тем меньше у него свойств. Однако с частицами микромира так не получилось. Атом демонстрирует свою неисчерпаемость: элементарные частицы обладают такими противоречивыми, удивительными, странными, поражающими свойствами, что их впору отождествить с персонажами последнего романа Д. Джойса.
      В самом деле, частицы могут отличаться массой, временем жизни, электрическим зарядом, лептонным зарядом, спином, изоспином, пространственной четностью, зарядовой четностью, странностью, спиральностью, способом распада, форм-фактором, магнитным моментом, силой взаимодействия с другими частицами и т. д. и т. п.
      А ведь завеса микромира только недавно начала приоткрываться!
      Вот эта фантасмагория свойств микромира и роднит его с вселенной, созданной воображением ирландского писателя.
      И все же Д. Джойс был бы несказанно удивлен, если бы узнал, что четверть века спустя после его смерти одно из придуманных им словечек кварк - перекочует в словарь физиков и станет наиболее популярным словом в субъядерной физике, знаменем этих исследований.
      В изложении для пешеходов
      Слово "кварк" ввел в науку американский физик-теоретик М. Гелл-Ман (родился в 1929 году в Австрии, в 1944-м его родители перебрались в США). М. Гелл-Мана, как и других физиков, беспокоила неразбериха и толчея, наблюдавшиеся в мире элементарных частиц.
      Вооружившись соображениями симметрии, законами сохранения и новейшей математикой, физики-теоретики принялись раскладывать "пасьянсы" из элементарных частиц, тасуя, перекладывая их и так и этак. Обнаружилось: многие частицы могут быть сгруппированы в семейства, близкие по своим основным свойствам.
      Гак, к примеру, если учитывать лишь главные характеристики - спины, барионные заряды, близость массы, внутреннюю четность, - закрывая глаза на некоторые различия, то 8 частиц: протон, нейтрон и гипероны Л°, Z+, Z°, Z-, E°, Е~ могут быть объединены в одно семейство барионов (октет) со спином 1/2 и положительной четностью. Подобные группы частиц получили название супермультиплетов.
      Нашлась и довольно абстрактная математика, "узаконившая" подобную классификацию: раздел теории групп, известный под названием группы Ли (С. Ли - норвежский математик, живший в прошлом веке).
      Математика допускала существование разных наборов частиц: из одной, трех, шести, восьми, десяти и т. д. Физики же наблюдали лишь синглеты (одна частица), октеты (восьмерки) и дециметы (десятки). Эту прихоть природы надо было объяснить.
      И вот в 1963 году одновременно и независимо, находясь даже на разных континентах - один в Америке, другой в Европе, - теоретики американец М. Гелл-Ман и австриец Г. Цвейг, чтобы устранить противоречие, высказали гипотезу о существовании трех фундаментальных субъядерных частиц, различными комбинациями которых и является большинство элементарных частиц.
      Только в вопросе, как назвать эти "детальки" микромира, М. Гелл-Ман и Г. Цвейг разошлись. Американец, большой, видимо, почитатель творений Д. Джойса, в поисках подходящего имени для новых частиц, возможно, начал перечитывать роман "Поминки по Финнегану" в наткнулся на то место, где дублинский трактирщик возомнил себя королем Марком, персонажем средневековой легенды.
      Королю кажется, что его племянник Тристан украл у него жену, прекрасную Изольду. Марк преследует похитителя на корабле. В небе над парусами кружат чайки (которые, впрочем, может быть, вовсе не чайки, а судьи).
      Они зловеще кричат-каркают: "ТРИ КВАРКА ДЛЯ МИСТЕРА МАРКА!"
      Короля мучают кошмары, а чайки все повторяют:
      "ТРИ КВАРКА, ТРИ КВАРКА, ТРИ КВАРКА..."
      Слово "кварк" перекочевало со страниц романа Д. Джойса в мир элементарных частиц легко и естественно. Скорее всего в этом отрывке М. Гелл-Мана привлекало то, что число кварков было именно три. Столько, сколько и требовала теория.
      Пришлось по вкусу ученому и само слово "кварк"
      звучное, диковинное, абсолютно незатасканное в других употреблениях.
      Итак, М. Гелл-Ман выбрал слово, и оно пришлось к месту. Г. Цвейг же был менее удачлив. Он назвал гипотетические субчастицы, претендующие на роль истинных кирпичиков праматерии, "тузами". Эта картежная терминология оказалась не столь привлекательна (тузов-то 4!), теперь о ней почти никто не вспоминает.
      А кварки прижились. Удивляло и радовало, что всего трех кварков было достаточно, чтобы конструировать из них - словно это детские кубики огромное число открытых к тому времени элементарных частиц.
      И вновь раздались победные клики в стане физиков.
      Казалось, наступила долгожданная пора, когда можно было "закрыть" большинство элементарных частиц за ненадобностью: ведь они были составными!
      В 1965 году в журнале "Успехи физических наук"
      академик Я. Зельдович пишет статью "Классификация элементарных частиц "в изложении для пешеходов". Уже само название подчеркивало: теперь тонкости микромира можно просто и ясно объяснить любому встречному, даже ребенку.
      Академик писал в статье, что, возможно, физики добрались до атомизма нового типа, вскрыли, так сказать, новый пласт материи. Что создано нечто вроде новой таблицы Менделеева, только уже на субъядерном уровне.
      Тон статьи был мажорный, радостный. "Современный физик имеет полное право повторить строки Ф. Тютчева", - писал Я. Зельдович, и цитировал их:
      Счастлив, кто посетил сей мир
      В его минуты роковые:
      Его призвали всеблагие,
      Как собеседника на пир;
      Он их высоких зрелищ зритель,
      Он в пх совет допущен был
      И заживо, как небожитель,
      Из чаши их бессмертье пил.
      Омега-минус- гиперон
      Не следует, однако, думать, что концепция кварков была сразу встречена физической общественностью с распростертыми объятиями. Вовсе нет! Как и все действительно новое и оригинальное, поначалу кварки были встречены в штыки. Научные журналы даже отказывались публиковать эту модель. Работы, где фигурировали тузы и кварки, казались не более чем теоретическим фокусом.
      Всего более поражало в кварках то, что они обязаны были обладать... дробным зарядом! Вот этот психологический барьер физикам было труднее всего преодолеть.
      Как же так? До этих пор считалось само собой разумеющимся, что заряд электронов (или равные ему с обратным знаком заряды протона или позитрона) - это и есть наименьшая возможная порция электричества, нерушимая, казалось, и неделимая. Но кварки потому и кварки, что для них невозможное стало возможным: одному из кварков совершенно необходимо было приписать заряд плюс 2/з, двум другим кваркам - заряд минус Vs.
      Первоначально упоминание о дробях как о частях прежде неделимого электрона просто шокировало. Мерещилось нечто вроде полсобаки или собачьего хвоста, лапок, живущих самостоятельной жизнью. Вспоминался и гоголевский Нос, разгуливающий по Невскому проспекту микрофизики.
      Понадобилось некоторое время, чтобы ошеломленным физикам кварки стали напоминать уже не тявкающий хвост, а нечто гораздо более тривиальное маленькую (меньше, чем электрон!) собачку, и все. Почему бы 7з заряда электрона (па данном этапе развития физики)
      и не быть самым крохотным зарядом? Почему не предположить, что в электроне как раз и собралась троица таких необычных электрических элементов?
      Кстати, заметим, кроме кварков, должны существовать еще и антикварки. Поэтому полный спектр кварковых зарядов есть + 1/3 и - 1/3, +2/з и -2/з.
      Надо понимать еще и то, что кварки меж собой различаются не только зарядами, но и другими свойствами.
      Поэтому главной троице кварков, кроме общей "фамилии", следовало - и это было сделано - присвоить и отдельные "имена".
      Правда, имена эти пока еще не отстоялись окончательно: называют кварки по-разному: говорят о р-, п-, Я- кварках (от слов "протон", "нейтрон" и "лямбдачастица"). Их обозначают и как u, d и s (первые буквы слов up верхний, down - нижний, strange - странный). Еще - совсем в духе Д. Джойса! - кварки называют парком (р), нарком (п) и ларком (Я).
      В этих именах-обозначениях очень красиво выглядят наши старые знакомцы протон (Р) и нейтрон (N) - будем обозначать их большими буквами, чтобы отличать от кварков (строчные буквы). По классификации М. ГеллМана и Г. Цвейга:
      Р = ррп и N = рпп.
      Схема кварков легко и просто объясняет, почему заряд протона единичный и положительный ( + 1), а у нейтрона заряд нулевой (0). Непосредственная проверка дает для протона (смотри только что приведенные выше равенства):
      (+2/3) + (+2/3) + (-1/3) = +1
      А для нейтрона имеем:
      (+2/3) + (-1/3) + (-1/3) = 0.
      Из кварков конструируются и наблюдающиеся в природе - об этом говорилось выше - синглеты, октеты и дециметы элементарных частиц. Так, группа из десяти частиц в кварковом "изображении" будет иметь такой вид:
      _____________ЛЛЛ_____________.
      ________рЛЛ_______nЛЛ________.
      ____ррЛ_____pnЛ_______nnЛ____.
      PPP____ppn_______Pnn______nnn.
      Секрет построения этой пирамиды донельзя прост.
      Мы последовательно перебираем все возможные комбинации троек, состоящих из элементов р, п и А,. Каждая из троек представляет собой элементарную частицу:
      в обычном - не кварковом - изображении мы получим такую таблицу:
      __________________Q-__________________.
      __________Z0*____________Z-*__________.
      _____Z+*_________Z0*_________Z-*______.
      _Д++______Д+___________Д°_________Д-__.
      Это эквивалент первой пирамиды, где знаками плюс, минус и ноль обозначены заряды элементарных частиц, а звездочки говорят о том, что помеченные ими частицы "возбужденные".
      Не будем больше анализировать кварковые конструкции. Отметим лишь, что вершину указанных пирамид венчает омега-минус-гиперон и что в момент, когда эта частица "родилась" на бумаге (1963), было известно:
      А - резонансы и возбужденные частицы действительно обнаруживаются в экспериментах, а вот A~ никто не наблюдал. Так что предсказание омега-минус-гиперона стало двойным вызовом: и экспериментаторам - ищите! и теоретикам - если такой частицы нет, плохи ваши дела!
      Теоретики сказали свое слово, и им оставалось просто ждать, а вот экспериментаторы немедленно принялись за дело.
      И научное чудо свершилось. В 1964 году омега-минусгиперон была обнаружена.
      Теория кварков и М. Гелл-Ман оказались правы:
      2~- частица существовала! Успех был полным.
      В 1969 году М. Гелл-Ман стал нобелевским лауреатом.
      2
      Ядерное сафари
      Погоня за зверем, на которого ты давно и страстно мечтаешь поохотиться, хороша, когда впереди много времени и каждый вечер после состязания в хитрости и ловкости возвращаешься хоть и ни с чем, но в приятном возбуждении, зная, что это только начало, что удача еще улыбнется тебе и желанная цель будет достигнута.
      Эрнест Хемингуэй. Зеленые холмы Африки
      Датский физик Н. Бор, создавший первую теорию атома, возглавлявший в первой четверти нашего века титанические усилия ученых по разработке основ квантовой механики, очень любил рассказывать такую историю.
      Некий английский лорд как-то расхвастался своими необыкновенными подвигами, якобы совершенными им при охоте на львов. Одна из слушательниц, молодая девушка, не выдержав, спросила его напрямик, сколько же львов он убил.
      - Ни одного, - спокойно ответствовал рассказчик.
      - Разве это не слишком мало? - ехидно заметила девушка.
      И это замечание нисколько не смутило лорда-охотника, он невозмутимо парировал:
      - Только когда речь идет не о львах!..
      Подобное можно было бы сказать и про результаты научной охоты за кварками: они оказались настоящим львом микромира!
      Золотыми буквами
      В декабре 1934 года маленькая охотничья экспедиция - американский писатель Э. Хемингуэй, его жена, друзья и следопыты-африканцы - выехала из Момбасы (Восточная Африка, порт в Кении на побережье Индийского океана) и двинулась на северо-запад через плато Серенгеттн, откуда повернула на юг, к озеру Маньяра.
      Путешествуя по Африке, Э. Хемингуэй и его спутники охотились на самых разных зверей - львов, леопардов, антилоп, носорогов, газелей.
      Позднее в книге "Зеленые холмы Африки" писатель очень ярко и точно описал все подробности этой охоты.
      Этой книгой Э. Хемингуэй провел своеобразный писательский эксперимент: он попытался создать "абсолютно правдивую книгу", не используя при этом ни одного вымышленного образа или события. И преуспел в этом.
      Жаль, что, когда - в середине 60-х годов - началась (продолжается она и поныне) экспериментальная охота за кварками, в ней не принял участия какой-нибудь писатель ранга Э. Хемингуэя, который поставил бы себе целью выяснить, может ли правдивое изображение научных событий - без прикрас и без разговоров о любви главных героев! - "соперничать с творческим вымыслом".
      (Конечно, охота обычная и охота научная не одно и то же. Э. Хемингуэй прекрасно владел ружьем, бил птицу и зверя без промаха, поэтому он мог фиксировать и потом запечатлеть в книге даже самые мельчайшие детали охоты. Представить же писателя, который мог бы стать полноправным участником физических экспериментов, да при этом держал бы в голове все хитросплетения теоретических нитей, да еще бы виртуозно владел словом, представить себе такого писателя трудно.
      Но это вовсе не означает, что в будущем не появятся научные Хемингуэи, способные осуществить экспедицию в любой, самый удаленный уголок микромира и убедительно, с полным знанием дела, красочно рассказать об этом, даже если охотиться им придется за "звврьми", не уступающими кваркам по изворотливости и неуловимости.)
      ...В те жаркие 60-е годы кварками интересовались не только физики геологи, биологи, химики тоже часто произносили это слово. Но, понятно, особенно волновались и суетились, принимая все это слишком близко к сердцу, научные журналисты. Они жадно прислушивались к свежим новостям, вникая, казалось бы, в неуместные подробности, судорожно перелистывали даже сверхспециальные статьи научной периодики в надежде, что наконец-то промелькнет сенсационное сообщение.
      Тема кварков властно захватила тогда многих.
      А ситуация оставалась противоречивой.
      Нетерпеливые и скорые на мысль теоретики уверенно (и с каждым днем все более: их схемы работали все лучше и лучше) говорили "да": кварки должны, просто обязаны были существовать в природе. Теоретикам возражали экспериментаторы. Более спокойные и не торопящиеся с окончательными выводами, они твердили "нет":
      пока в экспериментах обнаружить кварки никак не удавалось.
      "Рождение", "выживание" или "гибель" гипотез при их столкновении с данными опыта - дело в науке довольно обычное. И никто не станет пенять теоретику, если его научная версия не оправдалась. Гораздо сложнее положение экспериментатора: ошибаться ему не след, хоть такое и случается порой. С экспериментатора спрос больше, но зато ему больше и веры.
      Вообще, заметим, что в неразлучной паре "теория - эксперимент", как бы результативна и плодовита ни была теоретическая мысль, все же считается, что решающее слово остается за экспериментатором - он ближе к природе!
      На этот счет у физиков есть такая шутка. Они говорят, что различие между теоретиком и экспериментатором заключается в том, что результату теоретика обычно не верит никто, кроме него самого, а результату экспериментатора обычно доверяют все, кроме самого экспериментатора.
      "Нет", - в вопросе о существовании кварков слово экспериментаторов было решающим. Какие тут могут быть разговоры! Для доказательства есть только один путь: кварки необходимо было представить научному миру, так сказать, живьем.
      Кварки, какая бы это была ценная добыча! Пойманные кварки очень быстро перекочевали бы со страниц узкоспециализированных научных журналов в монографии. Потом в текст университетских и вузовских лекций. Затем и в школьные учебники. О кварках, об этом фундаменте материи, громогласно возвестило бы радио, их показывали бы (в рисунках, схемах) по телевидению, о них рассказывала бы многочисленная армия лекторов, их бы разобрали по .винтикам и вывернули бы наизнанку популяризаторы науки.
      А такой чести удостаивается не каждое научное достижение. Открытий в наш век сделано слишком много, о всех не расскажешь. Но кварки! Открытие кварков стало бы подлинным триумфом науки. Оно было бы записано в ней золотыми буквами, попало бы во все учебники и, несомненно, осталось бы в них на ближайшие, скажем, сотни лет.
      Опыт Милликена
      Итак, очень многие жаждали поймать хотя бы один кварк. И дело это вроде бы не должно было доставить много хлопот: кварки же ведь существа весьма экзотичные, и выделить их будет несложно.
      Главное - у кварков дробный электрический заряд (дробным, кстати, является и их барионный заряд; + 1/3), что и должно существенно облегчить их наблюдение. Эта дробность не позволяет им исчезнуть: распасться на обычные частицы (электроны, например), обладающие целым или нулевым зарядом. Иначе нарушился бы закон сохранения зарядов - один из краеугольных камней физики. Все эти рассуждения значили одно: кварки должны быть стабильными частицами. Если они существуют, то должны быть везде.
      И их, как только была выдвинута кварковая гипотеза, принялись искать повсюду - на поверхности Земли, в океанах, в космических лучах, на ускорителях элементарных частиц.
      Но, допустим, кварк у нас в руках: в той горстке материи, что мы держим. Как отличить его от других частиц? Какой для этого использовать метод?
      И здесь вспомнили про то, как был измерен заряд электрона. Сделал это в 1911 году американский физикэкспериментатор Р. Милликен (1868-1953).
      Р. Милликен был ученым с некоторыми странностями. Он один из немногих, кто упорно пытался примирить религию и науку. В колледже (другой пример эксцентричности) он специализировался по греческому языку и в физику влюбился только в университетские годы. Но уж зато экспериментатором Р. Милликен был первоклассным.
      Дж. Томсон, мы помним, открыл электрон, а вот измерил его заряд, да еще с прецизионной точностью, именно Р. Милликен. За это в 1923 году он был удостоен Нобелевской премии. Его опыт был элегантен, красив, точен, наивно прост и стал добротной классикой. Ученый изучал падение заряженных капелек в электрическом поле конденсатора.
      Опыты эти были начаты в 1906 году. Вначале бралась крохотная электрически заряженная водяная капелька.
      Вниз ее тянуло поле тяжести, вверх - электрическое поле.
      Неудача первых опытов состояла в том, что ничтожно малые кайли воды быстро испарялись, и уменьшение их веса вносило погрешность в расчеты. Поэтому в 1911 году ученый начал экспериментировать с каплями масла: тут испарение уже не вносило больших осложнений.
      Капельки масла (проводились и опыты с ртутными шариками) у Р. Милликена были настолько легкими (они весили 10^-11 - 10^-12 грамма), что изменение их количества электричества всего лишь на один электрон (тоже лилипут: его заряд 10^-19 кулона) уже заметно влияло на скорость их падения.
      Заряжение капель производилось их облучением X (икс)-лучами (так вначале называли лучи Рентгена).
      При этом менялся электрический "вес" капельки: капли начинали падать быстрее пли медленнее. В определенных условиях их можно было заставить даже подниматься вверх.
      Минимальное изменение в движении капли было обусловлено прибавлением пли вычитанием уже далее неделимой порции заряда. Ее (заряд электрона) и вычислил Р. Милликен, окончательно доказав атомарную (корпускулярную) природу электричества.
      Эти опыты и вспомнили прежде всего, когда начались энергичные розыски кварков. А обнадеживало тут вот что. Сам Р. Милликен однажды наблюдал капельку с количеством электричества, равным 2/з заряда электрона!
      Этот необычный резулыаг показался ученому подозрительным, он его просто отбросил, посчитав, чю в опыт закралась какая-то погрешность. Лишь спустя годы в одной из своих статей Р. Миллнкен вскользь упомянул об этом наблюдении. Значит, он наблюдал кварки?
      Кто знает. Мнения тут разделились. Многие считали, что условия проведения эксперимента не давали ему на это никаких шансов. Кварки звери довольно редкие.
      Повстречать их непросто. А капельки у Р. Милликена были очень маленькими: вероятность того, что в капельке спрятан кварк, становилась ничтожной.
      Но из последних рассуждений следовал и обнадеживающий для поисков кварков вывод: капли (пли частицы вещества) надо брать покрупнее, и еще желательно было бы их предварительно обогащать кварками. Ну н, естественно, надо использовать аппаратуру в миллионы раз более чувствительную, чем та, что была у Р. Милликена.
      Тогда и можно рассчитывать на успех.
      Подобно "гробу Магомета"
      И физики немедленно впряглись в поиски. Работа велась одновременно во многих странах.
      В США (Стэнфордский университет) группа исследователей измеряла заряды маленьких сверхпроводящих шариков диаметром около 0,1 миллиметра, заставляя их осциллировать, совершать колебания, в переменном электрическом поле. Величина осцилляции зависела от электрического заряда шарика. Это была рафинированная версия опыта Р. Милликена.
      Американцы сообщили радостную весть. В прибор один за другим помещали 9 маленьких шариков из ниобия, на 3 из них исследователи нашли заряд, равный одной трети. Эти заряды можно было удалить, промывая шарики ацетоном. Заряд исчезал или появлялся и в результате электрического разряда. Похоже, кварки находились на поверхности шариков. Кварки наконец обнаружены?
      Вряд ли. Достоверность этих результатов осталась под сомнением. Вполне возможно, что тут играли роль какието неучтенные особенности эксперимента. К примеру, шарики ведь должны быть абсолютно круглыми, симметричными не только по форме, но и по своему составу.
      Иначе неоднородность сказалась бы на равновесии шарика, а значит, и его заряде. Но в том, что шарики круглы, можно убедиться с помощью микроскопа. Однородность же объемных свойств проверить уже гораздо труднее.
      А она приводит к погрешностям в расчетах, что и может выглядеть как дробный заряд.
      При суждении об опытах американцев настораживало и то, что попытки повторить их "успех" в аналогичных исследованиях, проводившиеся в других странах, потерпели неудачу.
      В СССР поиски кварков схожим с милликеновским способом велись в МГУ под руководством академика Я. Зельдовича и профессора В. Брагинского. Исследовались частицы графита, весящие во многие тысячи раз больше больше вероятность встретить кварк! - чем капельки у Р. Милликена. В такой "махине", как рассчитали теоретики, кварки уже вполне можно было бы встретить (если, конечно, они есть в природе!).
      Частица графита в экспериментах висела между полюсами электромагнита, поле которого создавало земную невесомость: неоднородность поля (его градиент) компенсировала силу земного притяжения. И графитовые крупинки бказывались подвешенными между пластинками конденсатора подобно левитирующему йогу, висящему в воздухе безо всяких опор.
      Теперь на парящую в воздухе частицу направляли поток рентгеновских лучей, чтобы ее зарядить. Потом включали еще и электрическое поле.
      Заряженная частица в электрическом поле должна немного сместиться. Это смещение и интересовало экспериментаторов. А гораздо больше их заботило, будет ли смещение соответствовать заряду Vs или заряду еще какого-нибудь числа с тройкой в знаменателе.
      Дальше события развивались, как в добротной мелодраме. Недолгое счастье сменилось унынием. Вначале в серии из 17 измерений трижды наблюдались кваркоподобные смещения графитового тельца. То же повторилось и в видоизмененной серии опытов. И все же кварки тогда найдены не были.
      Частица графита, висящая в магнитном поле, подобно легендарному гробу Магомета, обладала дипольным электрическим моментом. Его взаимодействие с неоднородным электрическим полем, смещающим частицу, и явилось причиной этого научного недоразумения. Когда экспериментаторы нашли наконец способ сделать электрическое поле совершенно однородным, коварный дипольный момент перестал влиять на результаты опытов.
      Но при этом исчезли и кварки, точнее, те смещения, которые до этого свидетельствовали, казалось, об их присутствии. И исчезли уже навсегда.
      Открытие и закрытие. Иногда их делают разные исследователи: одни открывают, другие закрывают.
      Чаще же "закрывание" осуществляют сами "открыватели". Так было и в случае, о котором мы только что рассказали.
      Хотя и бывают порой "закрытия" ценные, "закрытия", восстанавливающие истину, спасающие науку от заблуждений, ложных дальнейших шагов, - цена их явно неравнозначна открытию. "Золото" найденного сверкает и слепит, веселя сердце первооткрывателей, помогая им быстро забыть всю тяжесть усилий, потраченных для достижения победного результата.
      Иное при "закрытии". Здесь трудности часто те же - отрицательность результата не уменьшает их ни на йоту.
      Ученые тратили последние силы, рискуя здоровьем, а то и самой жизнью (и такое бывает!). А что могут получить взамен? Разочарование, иронические замечания коллег, потерю веры в собственные силы, апатию. Не только победных возгласов не услышат, но даже просто опубликовать отрицательный результат не всегда смогут. В лучшем случае где-нибудь, как бы ненароком, в сносках, в примечаниях удастся упомянуть про кусок научной жизни, отданный такой неблагодарной работе.
      Следы невиданных зверей
      Когда высоко в небе пролетает реактивный самолет, он оставляет за собой постепенно расплывающийся след - облачко кристалликов льда. Сам самолет часто невидим, и его присутствие выдает лишь оставленный им белый пушистый хвост. Глядя на этот след, мы можем думать о чем угодно, но только не об элементарных частицах.
      А напрасно! Многие сведения о микромире ученые получили, как раз разглядывая следы, подобные следу самолета в небе. Оказывается, точно таким же способом и микрочастица может тропить свой путь.
      Но следы, невольно выдавая охотнику свое присутствие, оставляет и зверь в лесу. Так вновь пересекаются охота лесная и охота ядерная. По этому поводу можно было бы даже сочинить небольшое эссе. В нем нашлось бы место и для особых заповедей, отличающих охоту ученую от охоты обычной. Тут пришлось бы перечислить пункты вроде таких:
      1. В охоте научной поймал тот, кто поймал первым.
      Второй, третий и последующие "удачливые" охотники в зачет уже не идут.
      2. Совершенно неважно, сколько ты поймал. Даже единственного экземпляра "зверя" будет вполне достаточно.
      3. Вовсе не обязательно ловить самого "зверя": достаточно его каким-то образом обнаружить - увидеть и сфотографировать (чтоб не сомневались остальные охотники!) или, скажем, найти его след...
      Умению детектировать следы невидимых частиц, сделать их заметными для глаза или регистрирующего их аппарата мы обязаны английскому физику, выходцу из Шотландии Ч. Вильсону (1869-1959).
      Ученый начинал свою научную карьеру как метеоролог. Его интересовало, как зарождаются в атмосфере облака. Но эти поиски неожиданно завели его совсем в другую область науки.
      Ч. Вильсон часто любовался облаками, обволакивающими вершину Бен Невиса - высочайшего горного пика не только Шотландии, но и всей Англии. И уже в лаборатории (Ч. Вильсон был сотрудником Дж. Томсона в Кембридже) пытался в меньшем масштабе воспроизвести это красивое и загадочное тогда явление.
      Он поступал так: насыщал водяным паром воздух в небольшой камере, затем быстро выдвигал стенку-поршень камеры, смесь воздуха и водяного пара расширялась, температура ее падала. Воздух в камере переохлаждался, и в ней в любой момент могло начаться выделение капелек влаги. Так можно было имитировать образование облаков.
      Однако лабораторные облака, как и естественные, образуются не всегда. Хотя пересыщенный пар находится в крайне неустойчивом состоянии (ученые называют это состояние метастабильным), для образования капелек необходима "затравка", какие-нибудь микрозародыши. Ими могут быть, к примеру, всегда присутствующие в городском воздухе частицы индустриальной пыли. (След самолета в небе - это и есть капельки влаги, которые сконденсировались на частичках недогоревшего топлива, выбрасываемых мотором самолета, и быстро замерзли.)
      Ч. Вильсон продолжал экспериментировать, и однажды его осенила счастливая мысль, что зародышами каплеобразования могут стать и ионы воздуха. И доказал это.
      Когда заряженная элементарная частица проходит сквозь вещество, она своим электрическим полем срывает часть электронов с оболочек встречных атомов - ионизирует их. Вдоль пути пролетающей частицы выстраивается цепочка ионов. Если частица при этом движется в переувлажненной среде, то на ионах будут возникать капельки влаги. Они начнут быстро расти и достигнут видимых размеров.
      В 1912 году Ч. Вильсон сконструировал камеру (она теперь носит его имя), которая сыграла важную роль в изучении нравов микромира. Несколько десятилетий это был практически единственный способ, позволяющий визуально регистрировать ядерные процессы. (В 1927 году Ч. Вильсон получил за это изобретение Нобелевскую премию.)
      И все же это дерзость - по следам воссоздавать образ элементарной частицы. Грубо говоря, это похоже на попытку определить по следу только что пролетевшего реактивного самолета его конструкцию. Дерзость? Тем не менее физики давно научились довольно хорошо разбираться в ядерных следах.
      След следу ведь рознь. Движущийся электрон оставляет тонкий волнистый след: он легко искривляется, если вблизи траектории оказываются другие электроны. Массивная альфа-частица, наоборот, оставляет прямой и толстый след: это как бы носорог микромира, мчащийся сквозь заросли напролом. Но если на ее пути встретится тоже массивное атомное ядро, альфа-частица изменяет свой путь: в камере Вильсона будет виден резкий излом следа (следы физики называют треками).
      Чтобы теперь узнать подробности о заряде ядерной частицы, камеру Вильсона обычно помещают в магнитное
      поле. Оно искривляет ее путь, превращая его в дугу. Радиус изгиба траектории зависит от величины электрического заряда частицы: чем заряд больше, тем меньше радиус. Направление изгиба (направо или налево) говорит о том, какой у частицы знак заряда - положительный или отрицательный.
      Эти знания могут пригодиться и при ловле кварков.
      Ведь у них аномально малый заряд: и это хорошая зацепка для ученых-следопытов. Толщина следа, который оставляет частица в камере Вильсона, пропорциональна квадрату ее заряда. Поэтому частица с зарядом 7з - кварк - оставит в 9 раз более тонкий след, чем электрон. Вот по таким "рыхлым", разреженным следам и можно надеяться отыскать кварки среди других жителей микромира.
      С мышеловкой на слона
      Источником кварков (в опытах по их определению) могут стать космические лучи. Однако метод этот не очень надежен.
      Физик-экспериментатор, имеющий дело с не подчиняющимися его воле хаотическими потоками космических лучей, похож на авиаконструктора, который вдруг вздумал для испытания крыла самолета выбрать чистое поле, где, как он надеется, возникнет ветер нужной ему силы и направления. И подобно тому, как авиаконструкторы вынуждены были призвать на помощь аэродинамическую трубу, где режим испытаний строго контролируется, так и физики в конце концов обратились к подчиняющимся их требованиям пучкам частиц, разогнанных в ускорителях. И если к помощи космических лучей прибегают и по сей день, то причина понятна: в космических лучах - а вдруг повезет! - можно встретить частицы с энергиями, которые пока на несколько порядков больше тех, что дают самые крупные из ускорителей.
      Погоня за кварками в космических лучах, преследование их в ускорителях - как все это вновь наводит на мысли об охоте обычной. Параллели напрашиваются сами собой.
      Охота на лесного зверя официально подразделяется на охоту ружейную и охоту самоловную. И у ученых го же. Пальба в ускорителях - ну чем не ружейная охрга? А ученые, выслеживающие кварки в космических лучах, конечно же, занимаются охотой самоловной: прилетевший из космических глубин кварк попадает в приготовленные для него учеными капканы.
      Простейший физический "капкан" - фотопластинка.
      Она очень похожа на ту, что применяется в обычных фотоателье, только фотослой здесь особый. Он готовится по специальному рецепту, ибо должен быть крайне высокочувствительным, чтобы реагировать даже на очень слабые ионизирующие повреждения.
      К разряду ядерных капканов можно отнести и различные счетчики элементарных частиц. Старейший и, видимо, простейший из них - счетчик Гейгера.
      Это газоразрядная трубка, в которой создано сильно неоднородное электрическое поле. При попадании в рабочий объем счетчика ионизирующей частицы образуется электронная лавина: через счетчик течет ток. Это и позволяет вести учет частиц.
      Подобное устройство было изобретено Э. Резерфордом и немецким физиком X. Гейгером в 1908 году. Тогда этот прибор был незаменим при исследовании радиоактивности. По импульсам тока можно было подсчитать, что, например, грамм радия в секунду испускает 37 миллионов альфа-частиц.
      Физические приборы, использующиеся сейчас для ловли микрочастиц, довольно многочисленны - всех не перечтешь. Добавим сюда еще только уже знакомую нам камеру Вильсона для того лишь, чтобы обратить внимание на ее явные недостатки.
      Для ловли кварков камера Вильсона так же мало подходит, как рогатина или духовое ружье плохо вяжутся с современной охотой, где в ход пошли даже вертолеты!
      Счетчик Гейгера вышел из моды (правда, его еще используют, например, в биологии, где требования не столь высоки, как при ловле микрочастиц), потому что уж очень он "неповоротлив": регистрация сверхбыстрых сигналов ему явно не под силу.
      А "неповоротливость" камеры Вильсона проявляется в другом. Что можно довольно просто объяснить.
      Камеру наполняет газ (пары). Он очень разрежен в сравнении с жидкостями. Поэтому и следы получаются жидковаты, чересчур тонкими. А кварки (пора вспомнить о них) и сами не очень-то следоспособны. Так что ловить кварки в камере Вильсона - это то же, что при охоте на слонов пользоваться... мышеловками.
      Для ловли кварков и других необычных частиц требуются средства более надежные. И физика дала их.
      Приборы отбились от рук
      В 20-е и 30-е годы камера Вильсона все еще была чудом науки. Но требования к измерениям возрастали. Ученые имели дело со все более быстрыми и, главное, короткоживущими частицами. И хотя целое поколение физиков билось над усовершенствованием детища Вильсона, преуспели тут мало.
      Революцию в этом деле совершила изобретенная в 1952 году пузырьковая камера. Она справедливо стала сенсацией 60-х годов. С ее помощью был открыт и знаменитый омега-минус-гиперон, упрочивший славу М. ГеллМана и торжество кварковой гипотезы.
      В двух словах пузырьковую камеру можно представить как камеру Вильсона "наоборот". Вместо капелек жидкости в пересыщенном паре теперь исследователи имеют дело с пузырьками пара в перегретой жидкости.
      Жидкость мгновенно вскипает вдоль трека ионизирующей частицы и отмечает его гирляндой мелких пузырьков газа.
      Когда пузырьки в камере достигают значительных размеров, камера освещается и следы (они имеют микронные толщины) фотографируются (стереофотосъемка с помощью 2-4 объективов). После фотографирования давление в камере поднимается до прежней величины, пузырьки при этом исчезают, и камера вновь оказывается готовой к действию. Весь цикл работы пузырьковой камеры составляет величину порядка 1 секунды.
      Эволюция пузырьковой камеры - от рождения до нашпх дней - весьма примечательна и характерна. Методические усовершенствования шли гигантскими темпами:
      началось все с "сургуча и бечевки" (обычное выражение физиков, когда они хотят подчеркнуть, что в прошлом выводили законы с помощью самых простых средств), а закончилось дело тоннами и тоннами материала.
      Примером современной установки может служить созданная во Франции для совместной работы с советскими физиками водородная камера "Мирабель", установленная на ускорителе Института высоких энергий АН СССР под Серпуховом. Ее объем 10 кубических метров, общий вес движущихся частей достигает 2 тонн, а стоит она миллионы. Создание подобных устройств - уже дело государственного и даже межгосударственного масштаба.
      К чему такие гиганты? Они себя оправдывают, это легко доказать. Заполняющий камеру "Мирабели" жидкий водород представляет собой хорошую (простую и однородную) мишень для частиц, врывающихся в камеру из космоса или из "жерла" ускорителя. Тут пузырьковая камера решительно одерживает верх над ядерными фотоэмульсиями - этим винегретом из водорода, углерода, азота, кислорода, брома и серебра. (Работающие с ядерными эмульсиями физики всегда спорят о том, в какое именно ядро попала частица с высокой энергией.)
      Достоинство большого объема камеры в том, что теперь можно следить за ядерными событиями - за последовательными этапами распада частиц - на протяжении многих метров, а также регистрировать очень редкие процессы (рождение кварков?), представляющие для науки огромный интерес.
      Но гигантизм выставляет и свою оборотную, негативную сторону: обработать информацию, даваемую пузырьковой камерой, нелегко.
      Дело прежде шло так. Сначала лаборанты просматривали все полученные фотографии и отбирали те из них, где достаточно много "вилок". Отобранные снимки поступали затем на измерительные микроскопы. Все увиденное приборами автоматически засылалось в память ЭВМ.
      Но на изучение каждой фотографии даже современная электронно-вычислительная машина тратит немало времени. Вот и получается, что с помощью даже пузырьковых камер практически невозможно исследовать очень редкие события, которые случаются, скажем, раз за сто тысяч взаимодействий, вылетающих, к примеру, из ускорителя частиц с веществом камеры. И сейчас физики хотят совсем исключить человека из системы обработки поступающей из камеры информации. Автоматизировать все.
      Да, созданные человеком приборы сами стали проблемой. И изумленный их быстрым ростом изобретатель пузырьковой камеры американский физик Д. Глейзер мог с полным основанием сказать: "Приборы стали очень большими, они отбились от рук..." Добавим еще, что, получив за свое изобретение Нобелевскую премию по физике в 1960 году, Д. Глейзер тут же в интервью журналистам заявил, что его научные интересы изменились: он покидает ядерную физику и отныне займется молекулярной биологией.
      Поиск ведут кварколовы
      Вооруженные современными приборами (а мы рассказали только о некоторых из них, стоило бы еще поговорить о сцинтилляционных и черепковских названы в честь советского физика, лауреата Нобелевской премии академика П. Черепкова - счетчиках, об искровой камере и других чудесах экспериментальной техники), физики продолжали поиски кварков.
      Если протон действительно состоит из трех кварков, надо его расколоть, как орех, и сделать это можно при ускорении частиц на мощных ускорителях. Свыше 50 таких тщательных и остроумных экспериментов было поставлено. Но, увы, результат оказался нулевым.
      Конечно, можно предполагать, что энергии ускорителей недостаточно. "Скорлупа", дескать, протона или нейтрона так толста, что разбить ее пока не удается. Что же, тогда стоило бы поискать кварки в космических лучах, где энергия частиц может быть практически любой.
      Искали и в космических лучах, и поиски эти были отмечены драматическими моментами. Отдельные группы ученых уже считали, что ими пойманы частицы с дробными зарядами.
      Счетчики американцев - группа Адейра - полгода (!) свидетельствовали о попадании в них кварков. А потом? Перестали свидетельствовать, и ведут себя так же и до сего дня.
      К ловле кварков подключились и астрономы.
      Есть звезды, излучающие частицы очень высокой энергии. Эти последние могли бы способствовать образованию заметного количества кварков. Надежда была на то, что при этом возникнут (правда, в небольших количествах) "кварко-атомы": в них вокруг протона вращался бы уже не электрон, а отрицательно заряженный кварк.
      Такие атомы должны излучать спектр, похожий на спектр водорода, но самая интенсивная линия этого спектра будет уже ультрафиолетовой (длина волны около 2750 ангстрем).
      Астрономы надеялись, что так же, как столетие назад они обнаружили "солнечный газ" - гелий - сначала на небе (лишь потом гелий был открыт на Земле), так и кварки тоже окажутся "небесными пришельцами".
      Астрономы надеялись, но сейчас, видимо, надежду потеряли.
      И наше родное Солнце обмануло ожидания астрономов. В его спектре были обнаружены линии, которые хотелось бы приписать присутствию кварков, однако вскоре нашлось и другое, более простое и правдоподобное объяснение.
      Ученые искали кварки и в ближнем космосе (изучались образцы лунных минералов, метеориты, исследованиями занимались космонавты на орбитальных станциях), и в совсем дальнем.
      Думалось так: раз наша Земля, и Солнце, и Млечный Путь, все это результат сложной эволюции Вселенной, то, возможно, когда-то не было и протонов с нейтронами, а были только кварки. А уже потом из них образовалась материя, что окружает нас, но часть кварков - "реликтовые кварки" - не смогла воссоединиться в троицы.
      Вот ловлей этих чудищ, сохранившихся в первозданном виде (они не смогли "выгореть" и превратиться в нормальные частицы), и занимались ученые.
      К реликтовым кваркам следует добавить и те, которые могут образоваться, когда потоки космических лучей встречаются с веществом нашей планеты. Как ни малы тут шансы, все-таки Земля уже миллиарды лет подвергается воздействию космических лучей, если кварки существуют, они - как создания стабильные: распасться им уже не на что! - должны накапливаться в окружающем нас веществе.
      Где искать кварки? В земной тверди, в воде океанов, в атмосфере?
      Если доля кварков в веществе очень мала, их надо предварительно концентрировать. И были предложены разные проекты по обогащению океанической и иной кварковой "руды".
      Химики и геохимики тоже включились в кварковые поиски. Надежда была на то, что кварки в принципе могут очень охотно соединяться с определенными химическими элементами. Не будут ли тогда залежи, в которых эти элементы встречаются особенно часто, и залежами кварков?
      Исследовались и образцы осадочных отложений, взятых со дна океана: считалось, что массивные кварки должны скопиться там. Изучались даже раковины устриц, но и это не принесло желанного результата.
      К стану кварколовов примкнули и биологи. Известно, что некоторые растения могут накапливать в своих тканях и клетках редкие элементы, рассеянные в окружающей среде в мизерных количествах (этой способностью отличаются, кстати, и многие представители фауны).
      В северной Финляндии, например, есть лишайники, накапливающие стронций-90 (этот радиоактивный изотоп образуется при делении урана). Быть может, стоит поискать и растения - накопители кварков?
      Предложений было немало. Попыток их реализации (конечно, наиболее активными были физики) также оказалось предостаточно. Но после завершения каждой такой акции неизменно звучал неприятный рефрен - "нет".
      Это суровое слово, конечно, не перечеркнуло кварковой гипотезы, но и не способствовало укреплению ее позиций.
      Правда, один положительный итог поиски кварков дали. Было совершенно точно установлено, что если свободные кварки и существуют, то концентрация их в веществе ничтожно мала: не превышает 10^-18-10^-20 доли от общего числа протонов и нейтронов (по некоторым данным кварков еще меньше: 10^24-10^-30!).
      Космические разбойники
      Тщательные поиски кварков ведутся вот уже два десятилетия. Большой для современной физики срок! Однако до спх пор никто уверенно ни одного кварка так и не "увидел".
      Забавно, что пока физики-охотники "обшаривали окрестности", шла оживленная дискуссия о том, что означает само слово "кварк".
      Вдруг обнаружилось, что его использовал И. Гёте.
      В прологе к первой части "Фауста" Мефистофель говорит, что "бог сует свой нос во всякую дрянь". Звучит это по-немецки так: In jedem Quark begrabt er seine Nase.
      Кроме того, оказывается, "кварк" также и творог.
      В витринах молочных магазинов в странах, говорящих по-немецки, часто можно увидеть объявление: "Покупаем творог!" (Wir brauchen Quark!)
      Не дремали и писатели. Фантасты, должно быть, завидуя славе Г. Уэллса, "открывшего" атомную бомбу за тридцать с лишним лет до Хиросимы, наперебой писали о кварковых бомбах.
      Лингвистические и литературные дела шли успешно, а вот поиски физиков результатов не давали, что очень разочаровывало. В чем дело? Как объяснить неудачи?
      Может быть, кварки живут столь мало, что никакие современные приборы не в состоянии их обнаружить?
      Но, казалось бы, их даже сверхмимолетное присутствие должно было бы оставить какие-то следы: ядерные (уже долго живущие) продукты, разные излучения... Тогда, выходит, кварки вообще не существуют?
      "Нет, - полагают сторонники существования кварков, - неоткрытие этих частиц - явление временное".
      И в подтверждение этого своего мнения приводят различные исторические аналогии.
      Ведь злословили же когда-то о кинетической теории газов, что молекулы-де только фикция и просто все происходит так, как если бы они существовали, но что в действительности-то их нет. Что это-де только понятия, которыми удобно пользоваться в химии и термодинамике.
      Только много позднее эти "понятия" превратились в реальные молекулы и атомы.
      И законы Г. Менделя были высказаны задолго до того, как гены были обнаружены и исследованы непосредственно.
      О Г. Менделе (1822-1884) стоит поговорить немного подробнее.
      Сын бедного австрийского священника, он был вынужден вступить послушником в августинский монастырь города Брюнна (ныне Брно, Чехословакия), был посвящен в священники, но никаких церковных обязанностей не исполнял, а занимался преподаванием наук и опытами по скрещиванию расгений.
      Г. Менделя интересовали две далекие друг от друга области - математика и ботаника. Ему нравилось возиться с растениями в монастырском саду, ибо с детства приобрел практические навыки в садоводстве.
      Восемь лет неторопливо и тщательно этот странный монах скрещивал различные сорта гороха и терпеливо фиксировал результаты, подвергая их математической обработке. В 1865 году итоги работы были доложены в Брюннском обществе естествоиспытателей и опубликованы в "Записках" того же общества (1866).
Конец бесплатного ознакомительного фрагмента.

  • Страницы:
    1, 2, 3