Современная электронная библиотека ModernLib.Net

О космолетах

ModernLib.Net / Биографии и мемуары / Феоктистов Константин / О космолетах - Чтение (стр. 12)
Автор: Феоктистов Константин
Жанр: Биографии и мемуары

 

 


В других направлениях, наоборот, произошла концентрация усилий и продвижение вперед имеет место постоянно. Прогресс теперь направлен не на внешне эффектные технические достижения, а на углубление возможностей космической техники, повышение ее эффективности. Так что никаких шагов назад. Другое дело — темпы продвижения вперед, на поверхностный взгляд, они теперь не столь приметны. Но если всерьез посмотреть, например, на наши «Салют-6», «Прогресс», «Союз Т», на американские «Вояджер» и «Спейс Шаттл», то это вполне отчетливые шаги вперед.
      — Однако для тех, кто мечтал, что человек, проникший в космическое пространство и достигший Луны, непременно вслед за тем отправится на Марс, наступила полоса разочарований. Можем мы их чем-нибудь обнадежить?
      — Я не думаю, что полет на Марс будет осуществлен ранее чем через десять-пятнадцать лет. Хотя вообще-то о сроках говорить здесь почти не имеет смысла. И дело совсем не в том, способна ли на это сегодня техника. Пока она не способна, но если в полете на Марс возникнет необходимость, подготовка к такому полету займет, быть может, менее десяти лет.
      — Я знаком с множеством примеров посрамления скептиков, не верящих в перспективу решения тех или иных технических задач. Тем не менее беру на себя смелость высказать вновь сугубо скептическое суждение: в ближайшие двадцать-тридцать лет человек на Марс не полетит. Потому что такая экспедиция не будет оправдана. И потому что ее будет очень трудно осуществить. Марс будет исследоваться все более сложными и хитрыми автоматами.
      — Не согласен. Создать корабль для полета на Марс вполне под силу современной технике. Другое дело, что сегодня действительно не видно той цели, которая сделала бы полет на Марс необходимым.
      — А какую цель вы считаете достойной?
      — Если бы автоматические аппараты достоверно обнаружили на этой планете признаки жизни, но не смогли бы доставить на Землю пригодные для исследований образцы живых или растительных организмов, основания для отправки туда ученых стали бы серьезными. Известно, что генетический код всего живого на Земле в принципе построен одинаково. Если бы при наличии на Марсе жизни удалось выявить ее генетический код и сравнить с земным, в основном была бы решена задача о происхождении жизни на Земле. Окажутся коды разными — подтвердится гипотеза о самозарождении жизни. Будут они одинаковыми — торжество окажется за гипотезой «посева». Возможность решения этой краеугольной задачи оправдала бы те огромные затраты, которые действительно необходимы для организации марсианской эспедиции.
      — Как известно, ни советские «Марсы», ни два американских «Викинга» не обнаружили признаков жизни ни на поверхности планеты, ни в ее окрестностях. Не означает ли это, что и на автоматы в ближайшие годы надежд нет?
      — Это означает лишь то, что эти аппараты жизни на Марсе пока не нашли.
      — В начале семидесятых годов в мировой литературе довольно шумно обсуждались проекты космических систем для полета на Марс. Считалось, что такой полет состоится в середине или в конце восьмидесятых годов. Помнится, стоимость одного из проектов оценивалась в 42,5 миллиарда долларов, причем предполагалось, что корабль с экипажем в шесть человек будет собран на околоземной орбите из шести блоков с ядерными двигателями, работающими на водороде.
      — Помню этот проект. Мне он сразу показался не очень надежным и не вполне обоснованным. Авторы этого проекта, кажется, тоже не очень-то верили в него.
      — Вы считаете проблему энергетики для марсианской экспедиции разрешимой?
      — Вполне. Только не с ядерными и тем более не с обычными ракетными, а с электрическими двигателями.
      Чтобы достичь Марса, скорость старта с околоземной орбиты должна быть ненамного больше, чем для полета к Луне, — около четырех километров в секунду (для Луны — чуть более трех).
      Для торможения с целью перехода на околомарсианскую орбиту нужен импульс скорости около двух километров в секунду, для посадки — с учетом наличия сильно разреженной атмосферы — еще около двух, для старта к Земле — пять-шесть километров в секунду. Кроме того, придется неоднократно включать двигатели для коррекции траектории полета туда и обратно.
      В результате сумма всех потребных скоростей составляет без учета выведения на околоземную орбиту не менее 13–15 километров в секунду (для полета на Луну — около восьми).
      С учетом массы конструкции корабля, объема оборудования с многократно резервированными системами, необходимых запасов расходуемых ресурсов системы обеспечения жизнедеятельности (на шесть человек только пищи, воды, кислорода, соответствующего оборудования, по некоторым подсчетам, понадобится около 40 тонн, не считая резервов), массы энергостанции большой мощности, приняв массу возвращающегося на Землю аппарата с экипажем и материалами научных исследований порядка 10 тонн, получается, что при использовании жидкостных ракетных двигателей на кислородно-водородном топливе начальная масса марсианского корабля на околоземной орбите составит порядка 1000–1500 тонн.
      Разумеется, корабль с такой массой невозможно, да и нецелесообразно, выводить на орбиту одной ракетой. Корабль придется собирать на орбите. Однако для этого потребуется немалое количество ракет-носителей: 50–75 подобных «Протону», с помощью которой выводится на орбиту станция «Салют», или 8—12 ракет типа «Сатурн-5». Поэтому придется создать куда более мощные носители с полезным грузом, скажем, до 500 тонн (масса на старте порядка 15 тысяч тонн) и свести дело к двум-трем стыковкам.
      В принципе на околоземной орбите можно состыковать любое количество объектов, хотя в данном случае на всю процедуру потребовалось бы много времени. И это невыгодно с точки зрения хранения низкокипящих компонентов ракетного топлива — жидкого кислорода и жидкого водорода. По этой же причине этот вид топлива вообще непрактичен для столь продолжительного полета, каковым является экспедиция на Марс.
      Невыгодны обычные ракетные двигатели и с точки зрения невозможности резервирования ракетных ступеней, то есть, по существу, возможности обеспечить высокую надежность всего комплекса.
      Мы уже упоминали ядерные ракетные двигатели, они для полета на Марс рассматриваются очень часто. У таких двигателей нет камеры сгорания, реактивная струя получается при разгоне газа (водорода), нагреваемого в тепловыделяющих элементах ядерного реактора.
      Теоретически такой двигатель вдвое эффективнее жидкостного двигателя на водороде и кислороде, и с ним начальный вес марсианского корабля может быть существенно снижен. Хотя эффект от энергетических преимуществ двигателя будет заметно меньше из-за весовых затрат на радиационную защиту. А практически? К сожалению, пока неизвестно, поскольку эксплуатируемых ядерных двигателей пока не существует.
      Конечно, и с ядерными двигателями останутся те же проблемы: хранение запасов криогенной жидкости и невозможность резервирования ракетных ступеней. К ним добавляется проблема обеспечения безопасности экипажа в связи с присутствием мощного ядерного реактора. Не говоря уже об угрозе радиоактивного заражения поверхности Земли или окружающего пространства (да и Марса нежелательно) в связи с возможностью аварии.
      Применение электрореактивных — ионных или плазменных — двигателей будет, возможно, единственным практическим решением проблемы перелета между околоземной и околомарсианской орбитами (для посадки и взлета с планеты придется использовать жидкостные ракетные двигатели на обычном высококипящем топливе).
      В электрореактивных двигателях можно получить скорость истечения струи (а она и определяет эффективность двигателя и соответственно расход рабочего тела на ускорение корабля) в 10–20 раз выше, чем у самых лучших жидкостных ракетных двигателей. Скорость истечения в электрореактивных двигателях получается за счет разгона ионов или плазмы в электростатическом или в электромагнитном поле. Однако тяга у таких двигателей невелика и для получения даже минимально приемлемых ускорений (порядка 10? 4— 10? 5единицы) на борту корабля придется иметь мощнейшую электростанцию на базе ядерного реактора или солнечных батарей. При этом время набора скорости кораблем будет порядка нескольких месяцев. Но как раз ресурс электрических двигателей может быть очень большим, а расход рабочего тела получается малым.
      В результате масса марсианского корабля при тех же условиях может быть снижена вдвое — до 500–800 тонн. Электрический двигатель хотя и испытывался уже в космосе, пока еще далек от того уровня ресурса и надежности, который необходим для его применения к полету на Марс.
      Тем не менее энергетическую систему мы как будто в принципе решили. Но на ней трудности создания марсианского корабля не кончаются. Та же энергетика, но уже в количественном смысле, продолжительность полета, компоновка корабля и многие другие вещи зависят от выбора схемы полета.
      Здесь возникает несколько вопросов. Каков по количественному составу должен быть экипаж? Будет ли на корабле искусственная сила тяжести? Какие средства и оборудование должны быть доставлены на поверхность планеты? Какая часть корабля будет осуществлять посадку на поверхность Марса? По какой схеме и на какого рода аппарате будет осуществляться посадка? То же относительно аппарата, возвращающегося к Земле, и аппарата, осуществляющего посадку на Землю?
      Возможен, например, такой вариант. Межпланетный корабль (комплекс) состоит из двух основных блоков: орбитального, который по достижении Марса остается с частью экипажа на ареоцентрической орбите, и посадочного, который осуществляет посадку на поверхность планеты и взлет с нее.
      Вроде бы сходство со схемой полета на Луну. Однако здесь есть существенное отличие: Марс имеет атмосферу, хотя и очень разреженную (в 50—100 раз менее плотная, чем у Земли). Однако и такая атмосфера способна гасить большие скорости полета при небольшом угле входа. Для повышения эффективности торможения корабля нужно только увеличить поперечное сечение аппарата на единицу его массы. Сделать это можно за счет раскрытия специального зонта или тормозных щитков. Для посадки на поверхность планеты придется применить ракетные двигатели.
      Возвращение на Землю будет осуществляться в орбитальном блоке, причем выгоднее будет, очевидно, не тормозить его сразу в атмосфере Земли (вход внее будет со второй космической скоростью), а перевести сначала на околоземную орбиту.
      На компоновке марсианского корабля существенно скажется выбор типа энергетической установки. Если будут применены электрические двигатели, придется скорей всего, как об этом уже говорилось, установить ядерную электростанцию. Мощность ее будет несколько тысяч киловатт. КПДтакой станции едва ли будет намного выше 10–20 процентов. А это значит, огромное количество тепловой энергии — несколько десятков тысяч киловатт — придется «сбрасывать» в космосе. Понадобятся большие поверхности радиаторов-излучателей, что существенно скажется на весовом балансе всего корабля.
      Ядерный реактор электростанции придется удалить от обитаемых отсеков на достаточно большое расстояние — до 50—100 метров. Это позволит не заключать реактор в сплошную оболочку радиационной защиты, а применить «теневую защиту». То есть небольшой экран вблизи реактора закроет большую площадь обитаемых отсеков.
      Удалить реактор можно с помощью жесткой телескопической штанги. Кстати, такая компоновка позволит при необходимости создать искусственную силу тяжести путем закрутки всей системы вокруг центра масс.
      Возникают такие проблемы, как обеспечение экипажа кислородом и водой. Взять с собой их запасы на весь полет будет очень накладно, да и сохранять воду в течение двух-трех лет непросто. Придется, видимо, применить физико-химические и биологические средства их регенерации. Над такими методами в последние годы много работают ученые и инженеры. Вообще вопросы комфорта в марсианском корабле будут играть очень важную роль и решить их будет очень непросто.
      Понятно, что эффективность проведения исследований на Марсе будет зависеть от наличия и возможностей транспортных средств. При создании их нужно будет учесть разреженность атмосферы и периодически возникающие мощные пылевые бури. Кроме того, пребывание космонавтов на поверхности Марса должно быть существенно более длительным, чем это было у космонавтов на Луне. Кстати, в том случае навигация луноходов осуществлялась с помощью Земли. На Марсе можно будет воспользоваться только помощью с орбитального блока, да и то ограниченно. Значит, нужны автономные средства управления марсоходами.
      Задачу управления марсианским кораблем в полете на сегодня можно считать практически отработанной на автоматических межпланетных станциях. Конечно, на корабле будут свои вычислительные машины, потомки той, которая применяется сейчас на корабле «Союз Т».
      — Все, что мне известно о проблемах создания марсианского корабля и осуществления полета, меня, Константин Петрович, никак не настраивает на оптимистаческий лад. Я понимаю, что технические проблемы в принципе разрешимы, и все же… Как говорится, начать и кончить. Другое дело, если бы основная часть этих проблем была решена практически (именно решена, а не получена возможность для их решения!) еще до начала подготовки полета. В этом случае принятие решения об организации экспедиции (при тех условиях, о которых вы говорили) было бы реальным.
      — Космические программы, такие, как «Восток» и «Аполлон», показали, что, когда возникает необходимость, принципиальные задачи решаются, даже если начинать приходится с нуля. С другой стороны, конечно, предпочтительнее иметь уже отработанные решения. И все же я считаю: все определит в конечном счете наличие и весомость цели. Только от этого зависит решимость общества (одной страны или группы стран) идти на крупные затраты, связанные с полетом на Марс.
      — Мне кажется, здесь всегда будет замкнутый круг: чтобы решиться на подготовку экспедиции, нужно будет иметь реальные, осязаемые доказательства возможности ее осуществления, а чтобы получить их, нужно пойти на затраты, которые станут реальными, как вы говорите, только при наличии убедительной цели. Одним словом, я не верю в то, что экспедиция на Марс состоится в обозримом промежутке времени. По этим же причинам человек — во всяком случае, в ближайшие полвека — не полетит на Венеру. А вы как считаете, будет когда-нибудь человек на Венере?
      — Когда-нибудь — нет сомнений, хотя на сегодня сложности с Венерой представляются непреодолимыми…
      Из-за плотной атмосферы в результате парникового эффекта давление близ поверхности Венеры около 100 атмосфер и температура около плюс 500 градусов по Цельсию. Вполне реален, однако, полет на орбиту вокруг Венеры и зондирование верхних слоев ее атмосферы пилотируемыми аэродинамическими средствами.
      В последние годы возникают разного рода экзотические проекты улучшения условий на Венере. Предлагают, например, осуществить отсос ее атмосферной оболочки.
      Нет принципиально ничего невозможного для полета человека к Юпитеру. Хотя он намного дальше от Земли, чем Марс и Венера, и лететь туда с обычной энергетикой около двух лет. На возвращение же понадобится лет пять. Но интерес ученых к этой необыкновенной, загадочной планете весьма велик. Особенно в связи с результатами, полученными с автоматического зонда «Вояджер».
      В отличие от пустынных поверхностей Луны, Марса и Венеры, напоминающих какие-то земные районы, Юпитер, кажется, ни на что земное не похож. Похож скорее на погасшее Солнце. Посадить корабль на эту планету, конечно, никогда не удастся — не на что сесть, тверди нет. Другое дело спутники Юпитера, их большой выбор — на разных расстояниях от поверхности планеты, разных размеров и, следовательно, с различной гравитацией. Вот на них исследователю побывать наверняка захочется. Но будет ли это в обозримой перспективе? Один из нас, как вы, наверное, догадались, убежден, что будет. Другой не без сожаления скажет: едва ли.

РАКЕТА, САМОЛЕТ ИЛИ РАКЕТНЫЙ САМОЛЕТ?

      Сколько бы ни говорили о будущих кораблях и станциях, не только конструктивные проблемы определяют возможность и экономику их создания. Такова уж природа космонавтики, что во все времена многое будет зависеть от средств сугубо вспомогательных, не решающих собственно задач по освоению и исследованию космического пространства — ракет-носителей. Казалось бы, дело-то их всего-навсего доставить объект к месту «работы». А точнее, даже не доставить, а разогнать, «бросить» корабль с нужной скоростью в нужном направлении. А доберется куда надо он уже сам — согласно законам небесной механики. Так или иначе, но в общем-то всего лишь транспортная задача.
      Стоимость носителя в общей стоимости запуска космического аппарата бывает самая разная. Если носитель серийный, а аппарат уникальный — что-то около 10 процентов. Если наоборот — может достигать сорока процентов и более. Где вы видели на Земле объект, доставка которого к месту использований стоила бы так дорого? А все потому, что на Земле все транспортные средства используются многократно! А ракета-носитель применяется один-единственный раз.
      Пока космические запуски были редкими, этот факт особого внимания не привлекал. Казался нормальным. Но по мере увеличения интенсивности освоения космоса становился все более существенным. Аппарат работает на орбите или в межпланетном пространстве и приносит определенный научный или народнохозяйственный результат. А ступени ракеты, имеющие сложную конструкцию и дорогое оборудование, сгорают одна за другой в плотных слоях атмосферы или остаются без нужды на. орбитах. Естественным образом возник вопрос о снижении стоимости космических запусков за счет повторного использования ракет-носителей.
      Первые ракеты-носители создавались, как известно, не как принципиально новые машины, а с использованием конструкции боевых баллистических ракет. В основу последних одноразовый принцип закладывается изначально. Было бы смешно рассчитывать на их повторное использование, утяжелять и удорожать то, что все равно должно улететь в сторону противника.
      А между тем на заре эры жидкостных ракет вопрос стоял как раз наоборот. Роберт Годдард уже на одной из своих первых ракет в 1929 году установил парашют, который, правда, не сработал. И почти на каждой из своих последующих ракет, а сконструировал он около трех десятков ракет (все они были высотными, спускались вертикально), устанавливал парашюты. Очень ему не хотелось для каждого нового испытания строить новую ракету. Накладно это было. Но ни разу ему не удалось приземлить ракету без повреждений.
      Где располагать парашют? Лучше всего, казалось бы, в хвосте, вблизи центра масс. Но там расположена камера сгорания и, следовательно, имеют место высокие температуры. Парашют может подгореть, да и механизм выпуска может не сработать. Значит, в носовой части? Но тогда возникнет вопрос: в какой момент раскрывать парашют? Очевидно, пока ракета еще не перевернулась вверх хвостом, то есть в верхней точке траектории, когда скорость полета близка к нулю. Но в те времена (30-е годы) зафиксировать этот момент и выдать команду на механизм было очень сложно; парашют раскрывался не вовремя и часто рвался.
      Все ракетостроители того периода, включая советских, мечтали о возвращении ракеты на Землю без повреждений. Ведь это давало возможность проанализировать ее работу. Не говоря уже о повторном использовании конструкции. Однако очень редко были случаи, когда это удавалось.
      В 40-е годы эта задача была отчасти разрешена. При экспериментальных пусках по вертикали небольшие ракеты иногда удавалось спасать. Можно, казалось, применить спуск и для конструкций баллистических ракет, которые после отделения от головных частей падали на расстоянии нескольких сотен километров от места старта.
      Выяснилось, однако, что для приземления с достаточно малой скоростью, а она не должна для хрупкой конструкции ракеты превышать пяти-семи метров в секунду, нужен огромный парашют, масса которого составляла бы порядка шести-восьми процентов от массы конструкции. Но это при заданной массе головной части сильно сказывалось на дальности полета. По мере роста дальности ракет и, следовательно, их скоростей задача возвращения в атмосферу и посадки конструкции все более усложнялась. (Другое дело спасение небольших контейнеров с научными приборами, запускаемых ракетами на высоту и отделяемых от основной конструкции.)
      В 50-е годы в технической литературе обсуждались и другие способы возвращения ступеней. Например, с помощью аэростатов-баллонов, надуваемых гелием после того, как ракета затормозится с помощью парашютов. Считалось, что такой способ имеет преимущества с точки зрения доставки ракеты к месту старта — медленно опускающаяся на баллонах ступень может быть подхвачена вертолетом. Эту же задачу предлагалось решать за счет использования авторотирующего винта, который, подобно вертолету, мог бы привести ступень на нужное место. Об этом способе мы уже говорили при обсуждении методов посадки космических аппаратов. Еще рассматривалось «крыло Рогалло» — надувной дельтаплан, маневренность которого достаточно велика. Наконец, были сторонники применения обычных или выдвижных крыльев с небольшим реактивным двигателем, то есть превращение ракетной ступени в своего рода самолет.
      Серьезнее всего, пожалуй, велись проработки парашютно-ракетной системы, то есть того средства, которое применяется сейчас для спасения спускаемых аппаратов-кораблей. Конечно, при этом нужны еще вертолеты для перевозки ступеней с места посадки. Для очень больших ступеней рассматривался и такой вариант: посадка осуществляется на воду (скорость контакта может быть выше), после чего транспортировка может быть проведена на плаву буксиром.
      Но все эти способы, условно говоря, годятся только для первых ступеней, разгоняющихся до сравнительно невысоких скоростей (максимум два-три километра секунду) и падающих к тому же недалеко, в нескольких сотнях километров от места старта. Вторые ступени, разгоняющиеся до четырех-шести километров в секунду и более, тормозить и спасать значительно труднее. Необходимо ставить хотя бы небольшую теплозащиту. К тому же летят они на тысячи километров дальше от места старта и велико их рассеивание при падении, что создает сложности поиска их в труднодоступных районах.
      И, наконец, совсем сложно с последней ступенью — она выходит на орбиту вместе с аппаратом или кораблем, и, следовательно, ее нужно тормозить и защищать от нагрева точно так же, как спускаемый аппарат корабля. Практически эта задача для конструкций ракет если и разрешима, то за счет весьма существенных потерь массы на полезную нагрузку.
      И все же почему до сих пор не спасаются хотя бы нижние ступени? Кроме тех причин, о которых мы уже говорили, есть еще одна. Опять же экономическая. Ступень для повторного использования необходимо подвергнуть сложному восстановительному ремонту, стоимость которого соизмерима со стоимостью новой ракеты. Особенно если она серийная. Но даже и после ремонта на повторное использование ракетной ступени во многих случаях будет трудно решиться. Ведь надежность ее все же будет ниже, чем у совсем новой. И рисковать дорогостоящим спутником и тем более кораблем никто не захочет.
      С другой стороны, возвращение ступеней может дать эффект от повторного использования не только всей конструкции, но и отдельных ее частей и оборудования. Кроме того, оно помогло бы отрабатывать новые элементы систем. Отметим еще, что мягкая посадка (с уводом в сторону) ступеней ракет позволила бы избежать ограничений в хозяйственном использовании тех участков земли, иногда довольно больших, куда обычно падают эти ступени.
      И, наконец, в результате этого космос перестанет засоряться остающимися в нем и совсем там ненужными ступенями. Сейчас на орбите находится несколько тысяч отработавших ступеней и их частей. Количество их продолжает расти, хотя часть ракет со временем сходит с орбиты. И потом в принципе возможны столкновения с ними спутников и кораблей, хотя практически до этого еще далеко. За 25 лет космических запусков столкновений пока зафиксировано не было.
      И все же экономические оценки показывают, что оптимальные решения лежат пока еще в стороне от того, чтобы стало целесообразным спасать обычные ракетные ступени.
      Где же выход? Ведь проблема повышения экономической эффективности стоит перед космонавтикой весьма остро. Путь здесь единственный — создание специальных ракет-носителей многократного применения.
      Среди различных способов мы упомянули такой: крыло и двигатель. Конечно, к крылу и двигателю нужно добавить еще и посадочное шасси. Получается, таким образом… самолет. Но на легкую тонкостенную конструкцию ракетной ступени почти невозможно установить такое количество сложных механизмов и заставить ее летать. Нужно создавать совсем другую конструкцию, не имеющую почти ничего общего с обычной ракетой.
      Одним словом, возникла идея космического самолета. Нет, создать крылатую машину, которая, подобно воздушному лайнеру, взлетала бы с космодрома, совершала бы полет в космос и, оставив там спутник или космический корабль, возвращалась бы на Землю, пока невозможно. Главным образом, все из того же соображения — потребного соотношения масс.
      Естественно, что одним из первых появился и такой вариант: самолет с воздушно-реактивными двигателями поднимает в воздух и разгоняет до большой скорости вторую ступень с ракетными двигателями, которая так же, как и самолет-разгонщик, способна возвращаться на Землю и использоваться многократно. Такая схема казалась весьма перспективной, однако встал вопрос о создании «прямоточек», работающих до скорости два-три километра в секунду. Дело это пока далекое, но этой же причине не прошел и компромиссный вариант: самолет-разгонщик многократного использования несет на борту одну-две обычные ракетные ступени с полезным грузом.
      Затем появилось множество других схем — двух-трехступенчатые носители с самым различным сочетанием двигательных установок и принципов возвращения ступеней на Землю. Большинство из них оказалось или экономически невыгодными, или трудноосуществимыми в ближайшие годы.
      В начале 70-х годов в США было принято решение о разработке многократно используемой системы «Спейс Шаттл» («космический челнок»). Выбрана была одна из компромиссных схем: возвращается и повторно используется только верхняя, вторая ступень, причем без топливных баков.
      Старт «Шаттла» осуществляется с помощью двух мощных твердотопливных двигателей (диаметр — 3,7 метра) первой ступени, а также жидкостных ракетных двигателей второй ступени, которые питаются топливом (жидкий водород и жидкий кислород) от большого бака второй ступени. Сначала, после выгорания топлива, сбрасываются пороховые двигатели, затем пустой топливный бак. После этого вторая ступень выходит на орбиту.
      Что же происходит со сброшенными элементами конструкции? Бак (диаметром 8,5 метра и длиной 47 метров) разрушается и сгорает в плотных слоях атмосферы. Корпуса же пороховых двигателей спускаются на парашютах на воду, в океан, и буксируются к берегу, с тем чтобы после восстановительного ремонта и зарядки топливом использоваться вновь.
      Так или иначе, но схема эта — компромисс и в техническом и в экономическом отношении. Посудите сами: максимальный полезный груз «Шаттла» от 14,5 до 29,5 тонны, а масса на старте около 2 тысяч тонн, то есть полезная нагрузка составляет всего 0,8–1,5 процента от полной массы заправленного корабля. В то время как обычная ракета имеет два-четыре процента при том же грузе в 29,5 тонны, ее стартовая масса была бы равна 750—1500 тонн.
      Если же взять эти соотношения без учета массы топлива (понятно, что килограмм топлива и килограмм конструкции — вещи совсем разные), то преимущество в пользу обычной ракеты еще более возрастет — примерно от 10 до 15 процентов. Такова дань возможности использовать повторно хотя бы часть конструкции.
      Вторая ступень «Шаттла» представляет собой нечто вроде ракетного самолета. Почему «нечто»? Да потому, что, обладая крылом, эта ступень осуществляет сход с орбиты как обычный космический аппарат и производит посадку без тяги, только за счет подъемной силы стреловидного крыла малого удлинения. Крыло позволяет совершать некоторый маневр как по дальности, так и по курсу и в конечном счете производить посадку на специальную бетонную полосу.
      Посадочная скорость ступени при этом намного выше, чем у любого истребителя, — около 350 километров в час.
      Полезный груз размещается в большом грузовом отсеке верхней ступени (ее называют иногда не очень точно орбитальным самолетом). Грузом может быть как спутник или дополнительная ракетная ступень, которые нужно оставить на орбите, так и специальные блоки для исследовательской и экспериментальной работы людей. В этом случае верхняя ступень «Шаттла» остается вместе с блоками на орбите на весь срок работы (предположительно до месяца).
      Сейчас трудно судить, насколько, эффективной окажется эта система. Во всяком случае, технические и технологические трудности, с которыми столкнулись создатели «Шаттла», оказались выше, чем предполагалось. Разработка проекта велась почти десять лет, первый испытательный полет откладывался в течение полутора лет и состоялся в апреле 1981 года. Одна из трудностей — покрытие корпуса аппарата (а он имеет довольно сложную форму) теплозащитными плитками разных размеров и толщины (в различных местах ступени при прохождении плотных слоев атмосферы на этапе спуска будет различная температура — от нескольких сот до почти 1600 градусов по Цельсию).
      Верхняя ступень «Шаттла» в принципе должна выходить на низкую орбиту, и, следовательно, для того, чтобы доставлять спутники на более высокие (круговые или вытянутые) орбиты, включая стационарные, а также на межпланетные траектории, предполагается применять специальные ракетные ступени — «космические буксиры», которые, как уже говорилось, будут доставляться на низкую орбиту также «Шаттлами».
      Что и говорить, непросто все это — создать экономичную транспортную космическую систему.
      Некоторых специалистов в идее «Шаттла» смущает еще и другое. Согласно экономическим расчетам он оправдывает себя примерно при 40 полетах в год на один образец. Получается, что в год только один «самолет», чтобы оправдать свою постройку, должен выводить на орбиту порядка тысячи тонн разных грузов. С другой стороны, имеет место тенденция к снижению веса космических аппаратов, увеличению продолжительности их активной жизни на орбите и вообще к снижению количества запускаемых аппаратов за счет решения каждым из них комплекса задач. Если говорить об орбитальных станциях и пилотируемых кораблях, то их запускается в год считанные единицы.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14