Современная электронная библиотека ModernLib.Net

Евклидово окно. История геометрии от параллельных прямых до гиперпространства

ModernLib.Net / Математика / Леонард Млодинов / Евклидово окно. История геометрии от параллельных прямых до гиперпространства - Чтение (Ознакомительный отрывок) (стр. 2)
Автор: Леонард Млодинов
Жанр: Математика

 

 


Согласно легенде, Ферекид изучал тайные книги финикийцев и принес грекам верование в бессмертие души и перерождение, а Пифагор сделал эти представления фундаментом своей религиозной философии. Пифагор и Ферекид подружились на всю жизнь, однако на Лесбосе Пифагор не остался. К своим двадцати годам он успел съездить в Милет, где и познакомился с Фалесом.

Вот вам историческая картина[29]: юноша с длинными густыми волосами, облаченный не в традиционную греческую тунику, а в штаны – эдакий античный хиппи, – навещает знаменитого старца. Фалес к тому времени уже понимал, что его прежнее величие клонится к закату. Усмотрев в юноше, быть может, отблеск собственной молодости, он извинился за упадок своего разума.

Нам неведомо, что именно сказал Фалес Пифагору, однако известна сила его влияния на молодого гения. Годы спустя после смерти Фалеса Пифагор, сидя дома, время от времени запевал песни во славу усопшего провидца. Все античные свидетельства той встречи сходятся в одном: Фалес обратился к Пифагору с воззванием на манер Хорэса Грили, однако не на Запад отправил он молодого человека[30], а в Египет.

Глава 4. Тайное общество

Пифагор послушался советов Фалеса[31] и отправился в Египет, но в тамошней математике не обрел поэзии. Геометрические объекты были физическими сущностями. Линия оказалась веревкой, натянутой гарпедонаптом, или кромкой пашни. Прямоугольник – границами участка земли или поверхностью каменной плиты. Пространство – илом, почвой и воздухом. Именно грекам, а не египтянам принадлежит романтическое, метафорическое представление математики: пространство может быть математической абстракцией и, что не менее важно, абстракция эта может быть применена в самых разных обстоятельствах. Иногда линия – это просто линия. Но в то же время линия может представлять и ребро пирамиды, и границу пашни, и путь вороны в небе. Знание об одном переносимо на другое.

По преданию, Пифагор шел как-то мимо кузни и услышал, как по тяжелой наковальне стучат разные молоты. Он задумался. Повозившись со струнами, он обнаружил гармонические последовательности, а также связь между длиной поющей струны и тоном слышимой музыкальной ноты. Струна вдвое длиннее, например, поет в два раза ниже. Наблюдение с виду простое, однако глубина его революционна – его часто считают первым в истории примером эмпирического открытия закона природы.

Миллионы лет назад некто выдавил из себя какое-нибудь мычание или хмыканье[32], а некто другой проговорил бессмертные слова – ныне утерянные, но наверняка означавшие что-то вроде «я понимаю, о чем ты». Так произошел язык. В науке учение Пифагора о гармонии – явление того же порядка, первый пример описания физического мира в математических терминах. Не будем забывать ни на секунду, что во времена Пифагора не существовало даже простейшей математики чисел. Пифагорейцам, к примеру, открытие того, что умножение сторон прямоугольника друг на друга дает площадь этого прямоугольника, показалось подлинным откровением.

Для Пифагора и его последователей главной интригой математики виделись разнообразные численные закономерности. Пифагорейцы представляли себе числа как камешки или точки, выложенные в определенный геометрический узор. Они обнаружили, что некоторые числа можно сложить, разместив камешки на равном расстоянии в два столбика по два, в три по три и т. д. – так, чтобы получался квадрат. Пифагорейцы называли любое количество камешков, которые можно выложить таким способом, «квадратным числом», поэтому и мы зовем их до сих пор квадратами: 4, 9, 16 и т. д. Другие числа, как выяснили пифагорейцы, можно выложить так, чтобы получались треугольники: 3, 6, 10 и т. д.

Свойства квадратных и треугольных чисел завораживали Пифагора. Например, второе квадратное число, 4, равно сумме первых двух нечетных чисел, 1 + 3. Третье квадратное число, 9, равно сумме первых трех нечетных чисел, 1 + 3 + 5, и т. д. (То же верно и для первого квадрата: 1 = 1.) Пифагор заметил и то, что, подобно равенству квадратных чисел сумме соответствующих предыдущих нечетных чисел, треугольные числа есть сумма всех последовательных чисел, четных и нечетных. Да и сами квадратные и треугольные числа взаимосвязаны: если сложить треугольное число с предыдущим или следующим треугольным, получится квадратное число.

Теорема Пифагора тоже наверняка показалась волшебством. Вообразите древних ученых, исследующих треугольники все сортов, а не одни лишь прямоугольные, измеряющих все углы и стороны, крутя их и сравнивая друг с другом. Случись такое исследование в наше время, университеты посвятили бы ему отдельный предмет.

«Мой сын устроился на математический факультет в Беркли, – говорила бы в таком случае какая-нибудь гордая мать. – Треугольники преподает». И вот однажды ее сынуля обнаруживает любопытную закономерность: в любом прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов двух других сторон. Оказывается, это правило действует для больших треугольников, маленьких, толстых, коротких, одним словом – для любого прямоугольного треугольника из всех, какие когда-либо попадались под руку, однако не для любого треугольника вообще. Это открытие наверняка удостоилось бы заголовков в «Нью-Йорк Таймс»: «У прямоугольных треугольников обнаружена поразительная закономерность», – а ниже, помельче: «Практическую применимость предстоит установить еще не скоро».


Пифагоровы фигуры из камешков


Почему стороны прямоугольного треугольника обязаны всегда следовать настолько простому правилу? Теорему Пифагора можно доказать геометрическим умножением, которое любил применять сам Пифагор. Неизвестно, этим ли манером доказывал свою теорему ее создатель, однако способ вполне наглядный – потому что целиком геометрический. Сейчас-то существуют доказательства попроще – они полагаются на алгебру или даже тригонометрию, но ни той, ни другой во времена Пифагора не существовало. Но и геометрическое доказательство незатейливо: это лишь слегка вывихнутая математическая версия игры «соедини точки».

Для доказательства теоремы Пифагора геометрически потребуется знать всего один расчетный факт: площадь квадрата равна квадрату длины его стороны. Это просто-напросто современная формулировка Пифагоровой аналогии с камешками. Берем любой прямоугольный треугольник и строим на его сторонах по квадрату: один со сторонами, равными гипотенузе, и два – со сторонами, равными соответствующим длинам других сторон. Площадь каждого из этих трех квадратов есть квадрат длины соответствующей стороны треугольника. Если удастся доказать, что площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на двух других сторонах, это и будет доказательством теоремы Пифагора.

Чтобы все упростить, дадим сторонам треугольника имена. У гипотенузы оно уже есть, хоть и длинноватое, но пусть и останется, будем просто писать его с большой буквы – Гипотенуза, – чтобы точно понимать: речь идет об этой конкретной гипотенузе, а не вообще. А два катета назовем Алексеем и Николаем. Удивительное совпадение: именно так зовут двоих сыновей автора книги. На момент написания этой главы Алексей длиннее, а Николай – короче; договоримся учесть эту разницу при поименовании сторон треугольника (хотя доказательство прекрасно справляется и в случае с равными сторонами). Начнем с построения квадрата, длина каждой стороны которого равна сумме длин Алексея и Николая. Далее поставим на каждой стороне по точке, отделив таким образом сегмент длины Николая от Алексея, после чего соединим эти точки. Это можно проделать несколькими способами, но те два, которые интересны нам, обозначены на рисунке, стр. 43. В одном случае выйдет квадрат, чьи стороны равны Гипотенузе, и еще четыре треугольника-«обрезка». В другом получится два квадрата, чьи стороны равны Алексею и Николаю, а сверх того – два прямоугольника-обрезка, которые можно рассечь по диагонали и получить четыре треугольника, в точности равных тем, что у нас получились в обрезках в первом случае.

Остальное – дело счета. У двух построенных квадратов площади одинаковые, поэтому если выкинуть площади четырех треугольников-обрезков из обоих построений, оставшиеся площади недвижимости равны между собой. Однако в первом случае это квадрат со стороной, равной длине Гипотенузы, а во втором – это сумма двух квадратов с длинами сторон, равными Алексею и Николаю. Теорема доказана!

Под впечатлением от этого триумфа знания один из учеников Пифагора написал[33], что «не будь чисел и их природы, ничто существующее никому не было бы ясно». Пифагорейцы отразили основы своей философии в термине «математика» – от греческого «матема», т. е. «наука», «знание». Смысл слова отражает близкую связь понятий, хотя ныне существует четкое разграничение между математикой и наукой, но оно, как мы еще увидим, не было столь отчетливым вплоть до XIX века.

А еще есть разница между осмысленной речью и белибердой, однако пифагорейцы ее не всегда чувствовали. Трепет Пифагора перед взаимоотношениями чисел подтолкнул его к созданию множества мистических нумерологических верований.

Он первым разделил числа на четные и нечетные, но на этом не остановился: он одушевил их, разделив на «мужские» (нечетные) и «женские» (четные). Разные числа он соотносил с определенными понятиями: 1, например, связывал с разумом, 2 – с мнением, 4 – со справедливостью. Поскольку 4 в его системе представлял квадрат, его ассоциировали с правосудием – отсюда, в итоге, происходит современный оборот «square deal»[34]. Отдавая Пифагору должное, следует признать, что нам отделить великое от вздорного легко – спустя каких-то пару тысяч лет.

Пифагор был фигурой харизматической и гением, но и в части саморекламы не подкачал. В Египте он не только постигал египетскую геометрию, но стал первым греком, изучившим египетские иероглифы, и в конце концов занял пост египетского жреца – ну или во всяком случае его посвятили в их ритуалы. Он получил доступ ко всем таинствам – и даже был вхож в секретные храмовые залы. Он провел в Египте не менее тринадцати лет. И покинул страну не по собственной воле – напали персы и взяли его в плен. Пифагор оказался в Вавилоне, где в итоге получил свободу – а заодно разобрался в вавилонской математике. В пятьдесят он в конце концов вернулся на Самос. К тому времени он уже развил философию пространства и математики, которую собирался проповедовать. Дело было за малым – за последователями.


Теорема Пифагора


Его знание иероглифов производило на многих греков впечатление, что Пифагор владеет особыми силами. Он поддерживал слухи, обособлявшие его от простых граждан. Из странного о Пифагоре говорили, например, что он как-то напал на ядовитую змею и искусал ее до смерти. А еще болтали, что как-то в дом Пифагора вломился вор и увидел такое, что сбежал с пустыми руками, однако рассказывать, что же он увидел, отказался[35]. У Пифагора на бедре к тому же было «золотое» родимое пятно, которое он демонстрировал как знак своего божественного происхождения. Люди Самоса оказались не слишком падки на его проповеди, и Пифагор вскоре отбыл к людям попроще – в Кротон, итальянский город, колонизированный греками. Там-то он и основал «общество» своих последователей.

Жизнь Пифагора и легенда, которой она обросла, во многом похожи на таковые у другого харизматического лидера – Иисуса Христа. Трудно поверить, что мифы, рассказываемые о Пифагоре, никак не повлияли на создание кое-каких историй о Христе. К примеру, многие верили[36], что Пифагор – сын божий, в его случае – Аполлона. Мать Пифагора звали Парфенисой, что означает «девственница». До отъезда в Египет Пифагор вел отшельническую жизнь на горе Кармель – подобно нагорным бдениям Христа. Еврейская секта ессеев приняла этот миф и, говорят, позднее имела связи с Иоанном Крестителем. Бытует также легенда о том, что Пифагор восставал из мертвых, хотя, согласно этой истории, Пифагор имитировал собственную смерть, спрятавшись в тайном подземелье. Многие волшебные силы Христа и его чудеса сначала приписывали Пифагору: поговаривали, что он может быть в двух местах одновременно, умеет успокаивать шторм на море и повелевать ветрами, и к нему однажды обратился божественный глас. Кроме того, считалось, что он умеет ходить по воде[37].

Пифагорейская философия к тому же имела кое-что общее с Христовой. К примеру, Пифагор проповедовал, что надо любить врагов своих. Однако в философском отношении он был ближе к своему современнику, Сиддхартхе Гаутаме Будде (ок. 560–480 гг. до н. э.). Оба верили в перерождение[38], возможно – в теле животного, а значит, в животном могла находиться душа, прежде бывшая человеческой. Исходя из этого оба считали любую жизнь ценной и противо стояли традиционным для того времени животным жертвоприношениям, а также проповедовали строгое вегетарианство. Рассказывали, что Пифагор как-то вмешался в избиение собаки, сказав мучившему животное человеку, что он-де узнал в псе своего старого друга – перерожденного в собачьем теле[39].

Пифагор считал, что владение вещами мешает достижению божественных истин. Греки в те времена носили шерсть, а вещи склонны были красить в разные цвета. Состоятельный человек мог время от времени набросить мантию, на манер плаща, на плечи, застегнув ее золотой булавкой или брошью – с гордостью демонстрируя свое богатство. Пифагор отказывался от роскоши и запрещал своим последователям носить какую бы то ни было одежду, кроме простого белого льна. Денег они не зарабатывали – полагались на благотворительность кротонцев и, возможно, на средства некоторых учеников, поскольку вся собственность была собрана воедино, и все жили общинно. Устройство самой этой организации установить затруднительно, поскольку привычками и нравами люди того времени совсем не походили на нас. Например, пифагорейская братия отличала себя от обычных людей тем, что не мочилась на публике и не занималась сексом на виду у всех[40].

Скрытность играла важную роль в пифагорейском сообществе – вероятно, благодаря опыту Пифагора в тайных практиках египетского жречества. А может, из нежелания навлекать неприятности, которые могли возникнуть, узнай общественность о революционных идеях пифагорейцев. Одно из открытий Пифагора обросло такой таинственностью, что, согласно легенде, разглашение его было запрещено под страхом смерти.

Вспомним задачу определения длины диагонали в квадрате со стороной в единицу. Вавилоняне рассчитали это значение с точностью до шести десятичных знаков, но пифагорейцам этого показалось мало. Они пожелали знать точное значение. Как можно делать вид, что знаешь хоть что-нибудь о пространстве внутри квадрата, если не знаешь даже такого? Трудность, однако, состояла в том, что это значение пифагорейцы получали все с большей точностью, но ни одно полученное число не было исчерпывающим ответом. Но пифагорейцев так просто не смутишь. Им хватило фантазии задаться вопросом: а существует ли вообще такое число? Они заключили, что нет, – и им хватило одаренности доказать это.

Сейчас-то мы знаем, что длина этой диагонали равна квадратному корню из двух – иррациональному числу. Это означает, что его нельзя записать в десятичном виде с конечным количеством знаков после запятой и также его нельзя записать в виде целого числа или дроби, а пифагорейцам были известны лишь такие числа. Их доказательство несуществования этого числа на самом деле равносильно тому, что это число нельзя записать в виде дроби.

Пифагор со всей очевидностью преткнулся. То, что длина диагонали квадрата[41] не может быть выражена ни в каком виде, провидцу, проповедующему, что числа – всё, было совсем не с руки. Что же теперь: менять философию? Дескать, числа – всё, кроме некоторых геометрических величин, которые нам кажутся совсем уж загадочными?

Соверши Пифагор простую вещь: назови он диагональ как-нибудь особо, например d, или еще того лучше – ?2 и сочти ее некой новой разновидностью числа, нашему гению удалось бы ускорить создание системы действительных чисел на много веков. Предприми Пифагор этот шаг, он предвосхитил бы революцию декартовых координат, поскольку за отсутствием численной записи необходимость как-то описать этот новый вид числа недвусмысленно подсказывала изобретение числовой оси. Однако вместо всего этого Пифагор отошел от своей весьма перспективной практики ассоциировать геометрические фигуры с числами и заявил, что некоторые длины не могут быть выражены через числа. Пифагорейцы назвали такие длины алогонами, «неразумными», ныне мы называем их иррациональными. У слова «алогон» – двойной смысл: оно к тому же еще и означает «непроизносимое». Пифагор предложил решить возникшую в его философии дилемму так, что полученное решение было затруднительно отстаивать, и поэтому, в соответствии с общей доктриной скрытности, он запретил своим последователям[42] раскрывать неловкий парадокс. В наши дни людей убивают много за что – из-за любви, политики, денег, религии, но не потому, что кто-то разболтал что-то о квадратном корне из двух. Для пифагорейцев же математика была религией, и поэтому когда Гиппас нарушил обет молчания, его убили.

Сопротивление иррациональному продолжалось еще тысячи лет. В конце XIX века, когда одаренный немецкий математик Георг Кантор создал революционный труд, в котором попытался как-то укоренить эти числа, его бывший наставник, хрыч по имени Леопольд Кронекер, «возражавший» против иррациональных чисел, категорически не согласился с Кантором и потом всю жизнь ставил ему палки в колеса. Кантор, не в силах вынести подобное, пережил нервный срыв[43] и провел последние дни жизни в клинике для душевнобольных.

Пифагор тоже кончил не лучшим образом. Около 510 года до н. э. кто-то из пифагорейцев отправился в Сибарис – судя по всему, в поисках новых последователей. Сведений о том их странствии сохранилось мало; известно только, что всех убили. Позднее несколько сибаритов сбежало в Кротон от тирана Телиса, который незадолго до этого захватил власть в городе. Телис потребовал их выдачи. И тут Пифагор нарушил одно из своих главных правил: не вмешиваться в политику. Он уговорил кротонцев не выдавать беглецов. Разразилась война, Кротон победил, но Пифагору был нанесен непоправимый урон: у него завелись политические враги. Около 500 года до н. э. они атаковали пифагорейцев. Пифагор сбежал. Что с ним произошло дальше, не ясно: большинство источников утверждает, что он покончил с собой; однако есть и свидетельства того, что он тихо дожил остаток своих дней и умер почти столетним.

Пифагорейское общество просуществовало еще какое-то время после той травли – до следующей, случившейся примерно в 460 году до н. э., и в результате погибли практически все, за исключением нескольких последователей. Его учение дотянуло до 300-х годов до н. э. Воскресили его римляне – в первом веке до Р. Х., и оно стало главенствующей силой расцветающей Римской империи. Пифагорейство повлияло на многие религии того времени – александрийский иудаизм, например, дряхлеющие египетские верования и, как мы уже убедились, христианство. Во II веке н. э. пифагорейская математика вкупе со школой Платона получила новый толчок к развитию. Интеллектуальных потомков Пифагора в IV веке опять раздавила власть – восточно-римский император Юстиниан. Римляне терпеть не могли длинные волосы[44] и бороды греческих потомков философии Пифагора, а также их пристрастие к наркотикам вроде опия, не говоря уже об их нехристианских верованиях. Юстиниан закрыл академию и запретил преподавание философии. Пифагорейство еще померцало пару столетий, после чего растворилось в Темных веках примерно в VI веке н. э.

Глава 5. Манифест Евклида

Приблизительно в 300-е годы до н. э. на южном побережье Средиземного моря, чуть левее Нила, жил в Александрии человек, чья работа может потягаться по влиятельности с Библией. Его подход наполнил философию смыслом и определил суть математики вплоть до XIX века. Эта работа стала неотъемлемой частью высшего образования практически на все это время – и остается до сих пор. С восстановлением этого труда началось обновление средневековой европейской цивилизации. Ему подражал Спиноза. Им зачитывался Абрахам Линкольн. Его защищал Кант[45].

Имя этого человека – Евклид. О его жизни нам неизвестно почти ничего. Ел ли он оливки? Ходил ли в театр? Был ли коренаст или росл? История не знает ответов на все эти вопросы. Нам ведомо лишь[46], что он открыл школу в Александрии, у него были блестящие ученики, он осуждал материализм, был довольно милым человеком и написал не менее двух книг. Одна из них, утерянный труд по коническим сечениям, стала основой для позднейшей исключительно важной работы Аполлония[47], сильно продвинувшей науку навигации и астрономии.

Другая его знаменитая работа, «Начала», – одна из самых читаемых «книг» всех времен. История «Начал»[48] заслуживает детективного романа не хуже «Мальтийского сокола»[49]. Во-первых, это не книга в буквальном смысле, но собрание из тринадцати свитков папируса. Ни один оригинал не сохранился – они передавались из поколения в поколение чередой переизданий, а в Темные века чуть было не исчезли совсем. Первые четыре свитка Евклидова труда в любом случае – не те самые «Начала»: ученый по имени Гиппократ (не врач-тезка) написал «Начала» где-то в 400-х годах до н. э., и они-то, судя по всему, являются содержимым этих первых свитков, хотя оно никак не атрибутировано. Евклид никак не претендовал на авторство этих теорем. Свою задачу он видел в систематизации греческого понимания геометрии. Он стал архитектором первого осмысленного отчета о природе двухмерного пространства, созданного одной лишь силой мысли, без всяких отсылок к физическому миру.

Важнейший вклад Евклидовых «Начал» сводился к передовому логическому методу: во-первых, Евклид объяснил все термины введением точных определений, гарантирующих понимание всех слов и символов. Во-вторых, он прояснил все понятия, предложив для этого прозрачные аксиомы или постулаты (эти два термина взаимозаменяемы), и отказался от применения неустановленных выводов или допущений. И наконец, он выводил логические следствия всей системы лишь с использованием правил логики, примененной к аксиомам и ранее доказанным теоремам.

Вот зануда и привереда, а? Зачем уж так настаивать на доказательстве малейшего утверждения? Математика – вертикальное сооружение, которое, в отличие от архитектурной постройки, рухнет, если хоть один математический кирпичик окажется битым. Допусти в системе невиннейшую погрешность – и пиши пропало, в ней уже ничему нельзя доверять. По сути, теорема логики утверждает:[50] если в систему вкралась хоть одна ложная теорема – неважно, о чем она, – этого будет достаточно для доказательства, что 1 = 2. Говорят, однажды некий скептик припер к стенке логика Бертрана Расселла, желая возразить против этой уничтожающей теоремы (хотя в итоге говорил об обратном). «Вот что, – рявкнул усомнившийся, – допустим, один равно два, докажите, что вы – Папа Римский». Расселл, по свидетельствам, задумался на миг, после чего ответил: «Папа и я – двое, следовательно, Папа и я – одно».

Доказательство каждого утверждения означает, среди прочего, еще и то, что интуицию, хоть она и ценный поводырь, следует проверять на пороге доказательства. Фраза «это интуитивно понятно» – неподходящий шаг для доказательства. Слишком уж мы падки на всякую очевидность. Представим, что мы разматываем клубок шерсти вдоль экватора Земли, все 25 000 миль. А теперь представим то же самое, но в футе над экватором. Насколько больше ниток нам потребуется для этого? На 500 футов больше? Или на 5000? Упростим задачу. Представим теперь, что раскатываем один клубок вдоль поверхности Солнца, а второй – в футе над его поверхностью. К какому клубку нужно добавить больше ниток – к тому, что мы разматываем в футе от Земли или в футе от Солнца? Большинству из нас интуиция подсказывает «вокруг Солнца», однако ответ на самом деле таков: одинаковое количество, равное 2 футам, т. е. примерно 6 футов 3 дюйма.

Давным-давно была такая телевизионная программа «Поспорим»[51]. Участника помещали напротив трех подиумов, скрытых занавесами. На одном подиуме находился какой-нибудь ценный объект – автомашина, к примеру, а на двух других – какая-нибудь ерунда, утешительный приз. Допустим, участник выбирал второй подиум. Ведущий затем открывал один из двух оставшихся занавесов, скажем – третий. За ним, положим, находится утешительный приз, следовательно, настоящий приз – либо за первым занавесом, либо за вторым, который участник выбрал изначально. Ведущий далее спрашивает участника, станет ли он менять свой выбор – т. е. выберет ли теперь первый занавес. Вы бы изменили решение? Интуитивно кажется, что вероятность выигрыша – пятьдесят на пятьдесят, хоть так, хоть эдак. Оно было бы так, если бы у нас не было никаких предварительных вводных, но они у нас есть: предыдущий выбор и действия ведущего в этой связи. Внимательный анализ вероятностей, начиная с исходного выбора и далее, или применение нужной формулы, называемой теоремой Байеса [Бейза][52], показали бы, что шансов больше, если выбор изменить. Таких примеров в математике – когда интуиция подводит нас, а выручает лишь произвольная формальная логика, – навалом.

Точность – еще одно свойство, необходимое математическому доказательству. Наблюдатель может измерить диагональ квадрата с единичной стороной и получить результат 1,4, а с более точными приборами – 1,41 или даже 1,414, и как бы нам ни хотелось принять подобное приближение как достаточное, оно не даст нам получить эпохальное прозрение: это значение длины – величина иррациональная.

Крошечные количественные изменения могут иметь громадные качественные последствия. Вспомним государственные лотереи. Не теряющие надежду неудачники частенько пожимают плечами и говорят: «Не сыграешь – не выиграешь». Это правда, не поспоришь. Но правда и то, что шансы на выигрыш у тех, кто покупает лотерейный билет, и у тех, кто нет, отличаются на малюсенькую долю процента. Что произойдет, если лотерейная комиссия за явит, что решила округлить ваши шансы на выигрыш с 0,000001 % до нуля? Изменение почти неприметное, но поток наличности от продаж оно изменит еще как.


Фокус Пола Карри


Трюк, изобретенный фокусником-любителем Полом Карри[53] (см. предыдущую страницу), жившим в Нью-Йорке, – отличный геометрический пример. Возьмем квадратный лист бумаги и нарисуем на нем сетку из меньших квадратов семь на семь. Разрежем лист на пять частей и переложим их так, как показано на рисунке. В результате получим «квадратный пончик» – квадрат того же размера, что и исходный, однако по центру не будет хватать одного квадратика. Куда подевался этот квадратик? Мы что же, доказали теорему о том, что цельный квадрат равен по площади пончику?

Фокус состоит в том, что при пересборке квадрата фрагменты ложатся чуточку внахлест, и фигура в результате получается слегка жульнической – или, скажем так, приблизительной. Второй сверху ряд клеток получается чуть-чуть выше, а весь квадрат – на 1/49 длиннее по вертикали, чем должен быть, и этого как раз достаточно, чтобы набралась площадь недостающего квадратика. Но если бы нам доступно было измерение длин с точностью лишь до 2 %, мы бы не уловили разницу между этими двумя фигурами и впали бы в искушение сделать мистический вывод, что площади квадрата и «квадратного пончика» равны друг другу.

Учтены ли как-то подобные малые расхождения в теориях пространства? Одной из путеводных идей в создании общей теории относительности, гениальной теории об искривлении пространства, послужило Альберту Эйнштейну именно отклонение перигелия Меркурия от классической ньютоновской теории[54]. Согласно теории Ньютона, планеты движутся по идеальным эллиптическим орбитам. Точка, в которой планета ближе всего к Солнцу, называется перигелием, и, если теория Ньютона верна, планета должна ежегодно проходить строго через эту точку. В 1859 году в Париже Урбен Жан Жозеф Леверье сообщил, что перигелий Меркурия постоянно смещается – самую малость, всего 38 секунд в столетие, что, конечно же, никаких практических последствий не имеет. И тем не менее такое отклонение почему-то происходит. Леверье назвал это «чудовищным затруднением, достойным внимания астрономов». К 1915 году Эйнштейн достаточно развил свою теорию – и вычислил орбиту Меркурия; в эти расчеты обнаруженное отклонение вполне вписалось. По словам биографа Эйнштейна Абрахама Пайса, это открытие стало «высшей точкой его научной жизни. Он был так взбудоражен, что три дня не мог работать». Каким бы малым ни было это отклонение, его объяснение привело к падению классической физики.

Целью Евклида было построить систему так, чтобы в ней не оставалось места для нечаянных допущений, основанных на интуиции, угадывании или приблизительности. Он ввел двадцать три определения[55], пять геометрических постулатов и пять дополнительных постулатов, которые он назвал «Общими утверждениями». На этом фундаменте он доказал 465 теорем – практически все геометрическое знание его времени.

Евклид дал определения точке, линии (которая, согласно определению, может быть искривленной), прямой линии, окружности, прямому углу, поверхности и плоскости. Некоторые понятия он определил довольно точно. «Параллельные прямые, – писал он, – это прямые линии, которые, находясь на одной плоскости, продолженные до бесконечности в обоих направлениях, ни в одном из этих направлений не пересекаются».


  • Страницы:
    1, 2, 3, 4, 5