Современная электронная библиотека ModernLib.Net

Инфодинамика, Обобщённая энтропия и негэнтропия

ModernLib.Net / Философия / Лийв Э. / Инфодинамика, Обобщённая энтропия и негэнтропия - Чтение (стр. 1)
Автор: Лийв Э.
Жанр: Философия

 

 


Лийв Э Х
Инфодинамика, Обобщённая энтропия и негэнтропия

      Э.Х.Лийв
      ИНФОДИНАМИКА
      ОБОБЩЁННАЯ ЭНТРОПИЯ И НЕГЭНТРОПИЯ
      Изложены основные принципы новой научной дисциплины - инфодинамики, которая занимается общими закономерностями универсума и распространения в нем информации.
      CОДЕРЖАНИЕ
      Введение
      1. Универсум как иерархический комплекс систем
      2. Единство массы, энергии и негэнтропии в системе
      3. Информационные модели. Вторичная реальность. Сознание
      4. Обобщённая энтропия (ОЭ) и негэнтропия (ОНГ)
      5. Информация и методы её измерения
      6. Структура инфосистем
      7. Системы обработки информации
      8. Общие закономерности и принципы инфопередачи
      9. Балансы ОЭ и ОНГ при развитии систем
      10. Инфокинетика. Скорость, своевременность и старение инфопередач
      11. Оптимизация процессов управления системами
      12. Процессы инфообработки в экономике, науке и культурe
      Негэнтропийные основы экономики
      Структура товара, труда и прибыли
      Информация и наука
      Негэнтропийные критерии в технике и технологии
      Негэнтропийные основы искусствоведения и в религии
      Негэнтропия в правовом государстве
      Негэнтропия в обществоведении и в социологии
      13. Самоорганизующиеся системы. Синергетика
      14. Мировоззрение и перспективы инфообщества
      Литература
      ВВЕДЕНИЕ
      Теория информации, кибернетика и синергетика, дости-гающие огромных успехов в области управляющих и самораз-вивающихся систем, не в состоянии полностью объяснить и обобщить все информационные явления и процессы, проте-кающие в природе и обществе. Разные виды информации и негэнтропии различаются не только количеством, но и качест-вом, многомерностью, эффективностью, степенью обобще-ния, трудноформализованностью, содержательностью, недос-таточно исследованных указанными науками. Неясен процесс перехода информации в свою связанную форму - негэнт-ропию. Недостаточно изучены критерии и методы оценки количества и качества информации, особенно в общест-венных системах.
      Наиболее общими закономерностями в процессах пере-дачи, превращения, обработки и хранения информации (или её связанного вида: негэнтропии) занимается новая наука - инфодинамика. Исходные положения инфодинамики сле-дующие:
      1. Универсум состоит из иерархически и интерактивно взаимосвязанных систем. Их пределы, структура и функ-ции разнообразны, но все они существуют объективно.
      2. Каждая система обязательно содержит вещество (массу), энергию и негэнтропию. Можно рассчитать их эквивалентное суммарное количество и соотношение преобладающих форм.
      3. Информацией является любая связь между системами, в результате которой увеличивается негэнтропия хотя бы одной из этих систем.
      4. Сознание, мысли, наука и другие результаты умствен-ной деятельности человека и общества являются вто-ричной реальностью т.е. приближёнными моделями реального мира. Однако и они являются объективно су-ществующими системами, состоящие из вещества, энер-гии и негэнтропии.
      5. Не существует абсолютной информации. Есть много-мерная информация относительно цели и события в системе, содержащаяся в другом событии или объекте.
      6. Можно получить много дополнительных данных по движению и направлению потоков информации между системами путём анализа баланса негэнтропий и энтро-пий в совокупности систем.
      Настоящая книга посвящена обоснованию, конкрети-зации, развитию и формулировке выводов или основных на-правлений по применению вышеуказанных исходных поло-жений.
      В 1-ой главе даётся характеристика и систематизация основных типов систем в универсуме. Кажущаяся мысленная свобода выбора систем по структуре, функциональным свойствам, масштабу, назначению и по другим признакам не противоречит объективному существованию реальных систем. Обоснованы и даны обобщённые характеристики систем, вы-ражающие единство и эквивалентность вещества (массы), энергии и негэнтропии (гл. 2). Материя, энергия и нег-энтропия могут находиться в виде многочисленных вариантов структуры, что определяет их качество и возможности эффек-тивного, более или менее свободного преобразования.
      Изложены основные положения негэнтропийной теории умственной деятельности человека и общества (гл.3). Созна-ние определяется совокупностью моделей, обладающих мак-симальной возможной энтропией, часть которой компен-сирована негэнтропией. Приближенными моделями являются мысли, эмоции, подсознание, религиозные взгляды, представ-ляющие собой также объективные системы. Дано информаци-онное толкование основным общественно-политическим и эти-ческим понятиям. Приведена методология расчёта обобщён-ной энтропии и негэнтропии сложных многомерных неравно-весных систем, основанная на суммировании их условных энтропий по всем факторам, влияющим на целевые кри-терии (гл. 4). Системный анализ влияния этих факторов поз-воляет выяснить из них существенные и получить дополни-тельную информацию для управления и оптимизации систе-мой. На этой основе усовершенствованы методы измерения многомерной информации, передаваемой в живой и неживой природе или в обществе (гл. 5). Методы позволяют более подробно проанализировать и проектировать структуру, рабо-ту и эффективность инфосистем и систем обработки информа-ции (гл. 6 и 7). Рассмотрены общие принципы информацион-ного взаимодействия между системами в иерархических комплек-сах систем (гл. 8). Исследованы условия самопроизвольной передачи и направления потока информации между система-ми. Описаны механизмы перехода информации как процесса в её связанную, локализованную форму - негэнтропию.
      Для выяснения основных потоков и потерь информации приведён метод энтропийных или негэнтропийных неравенств (гл. 9). Существенными факторами, влияющими на эффек-тивность и качество информации, являются своевременность её передачи, положительный эффект в системе после её полу-чения и коэффициент её рассеяния, потерь (гл. 10). Разра-ботанные методы определения обобщенной негэнтропии дают возможность усовершенствовать ряд вопросов создания оптимальных управляющих схем и программ в кибернети-ческих стохастических системах (гл. 11). Открываются воз-можности комбинирования данного метода с другими метода-ми решения трудноформализуемых задач: эвристическим программированием и экспертными системами.
      Отдельно проанализированы информационные процессы в экономике, науке и культуре (гл. 12). По вопросам эконо-мики рассмотрены зависимости между стоимостями инфор-мации и товара, между потоками информации и денег, между вводимой негэнтропией и образованием прибыли. Рассмотре-ны синергетические процессы саморазвития сложных систем с точки зрения увеличения их обобщённой негэнтропии (гл. 13). Указаны на условия и движущие силы, необходимые для потоков информации и развития систем, а также механизмы превращения информации в диссипативных структурах.
      B заключительной 14-ой главе обсуждаются вопросы мировоззрения человека, роль информации и образования при нахождении человеком своего оптимального места в обществе. Рассмотрены информационные методы прогноза развития мировой системы, общества и конкретного человека в нём.
      В книге обобщены результаты многолетней работы автора. В ней стремились сформулировать наиболее общие законы, действующие во всех системах и вытекающие из эквивалентности негэнтропии, энергии и вещества. Общие закономерности можно конкретизировать и составлять прак-тически используемые модели систем, гомоморфность кото-рых зависит от количества и качества дополнительных дан-ных. Новые представления могут оказать существенное влия-ние на мировоззрение и философские теории в инфообществе.
      Книга расчитана на широкий круг специалистов, осо-бенно в области информатики, кибернетики и образования. Она полезна и для студентов и для всех, интереcующихся ролью информации в развитии универсума.
      Таллинн, 05.09.97. Э.Лийв.
      1. УНИВЕРСУМ КАК ИЕРАРХИЧЕСКИЙ КОМПЛЕКС СИСТЕМ
      Универсум состоит из бесконечного числа объектов в состоянии непрерывного развития в условиях огромного раз-нообразия. Сюда относятся, кроме материальных частиц и энергии, также разного рода поля, духовная жизнь, сознание, эмоции, явления культуры, энергетические коллапсы в космо-се и исчезновения вещества, пространства и времени на рассто-яниях меньше, чем предельная длина Планка (10-35 м). В этом разнообразии единственном признаком, который имеется у всех объектов и явлений, является их системное строение [ 1 ]. Нет объектов и явлений, которые не образовали бы систему с другими объектами и не являлись бы системой эле-ментов [ 2 ]. Для понятия "система" дано множество форму-лировок [ 3 - 9 ]. В данной работе рассматривается систему как целостную совокупность элементов и отношений между элементами. Определённое таким образом понятие системы может быть конкретизировано по разным признакам струк-турой, функциями, динамическими изменениями по времени и взаимоотношениями с окружающей средой. Более абст-рактную и общую формулировку дал А.Рапопорт: системой является определенная часть универсума которую можно опи-сать таким способом, что даётся определённому количеству переменных конкретные величины. В динамических системах одной переменной может быть и время. В экономической ки-бернетике распространена следующая формулировка: система - это множество, в котором реализовано заданное отношение R, у которого имеются определённые постоянные свойства.
      ОБЪЕКТИВНОСТЬ СУЩЕСТВОВАНИЯ СИСТЕМ
      Кажущаяся мысленная свобода выбора систем по струк-туре, функциональным свойствам, масштабу, назначению, целенаправленности, количеству и соотношению элементов и по другим признакам, может вызывать сомнений в объектив-ном существовании реальных систем. Известный специалист по системному анализу С.Л.Оптнер пишет даже, что система является всего-навсего средством, при помощи которого дос-тигают решение проблемы [3]. Со стороны потребностей субъекта это верно, но это не даёт повода для отрицания объективного существования реальных систем, их моделей и сознания. Все реально существующие системы обладают ог-ромным разнообразием и их невозможно по полной глубине и объёму охватывать человеческим разумом. Поэтому человек и наука используют для решения проблем упрощённых моде-лей - систем, в т.ч. мыслей, понятий, теории и др. Однако, каждая мысленная модель в сознании человека является также системой, только во вторичной реальности (в мозгу). Мысли больше или меньше совпадают с первичной реаль-ностью, но являются самостоятельными системами, содержа-щими негэнтропию (ОНГ), массу и энергию.
      Возражения против объективности систем исходят обыч-но не от отрицания её состава ? совокупности элементов, а от отрицания достоверности, однозначности других признаков системы - целостности и отношения между элементами [ 119 ]. Например, понятие спирт не обозначает только совокупность - систему данного химического соединения в мире. Спирт является и компонентом алкогольных напитков, следова-тельно входит и в эту систему. Таким же образом он входит и в понятие системы лекарственных препаратов, наркотиков, жидкостей, лаков и т.д. Отдельные атомы тоже представ-ляют собою системы. Однако в молекуле эти атомы представ-ляют системы, обладающие совсем другими свойствами. Элект-роны могут в мoлекулах перейти к другим атомам. В метал-лах и кристаллах электроны часто могут вообще свободно передвигаться в решётке из атомных ядер. Ещё большая не-определённость наблюдается при рассмотрении разного рода полей в качестве систем (электромагнитное поле, гравитаци-онное поле и др.). Утверждение того, что энтропия полей приближается бесконечности, справедливо только для общего случая (для первичной реальности). В действительности даже в абсолютном вакууме имеются поля которые характери-зуются определёнными физическими величинами - напряжен-ностями гравитационного, электромагнитного или электронно-позитронного полей. Специфичным при возбуждений поля является его квантовый характер, проявляющийся в дискрет-ности массы, энергии, импульса, заряда, спина в виде кван-тов возбуждения. Квантовый характер возбуждения всех полей сам доказывает их объективную, системную сущность (наличие ОНГ).
      Значительно труднее искать систему в микромире. Уже на уровне электрона начинает действовать соотношение неоп-ределённости, т.е. в принципе невозможно определить одно-временно место нахождения и скорость электрона, также её точную орбиту. Чем меньше становятся измеряемые размеры элементов (частиц) системы, тем больше растёт неопределён-ность их структуры, тем в большей степени необходимо при-менить вероятностные закономерности.
      Экспериментально почти невозможно исследовать струк-туру объединённого суперполя, ниже длины Планка (10-35 м.). Однако косвенные спектральные признаки, явления вибрации полей, флуктуации, когерентности, появление виртуальных частиц, которые имеют квантовую природу, дают основание предполагать о наличии системности и в этой области. Виб-рировать, флуктуировать и образовать виртуальные частицы с квантовой природой могут только хотя бы минимально упорядоченные участки поля. Флуктуацию вызывают локаль-ные неоднородности системы. Неоднородности, в благоприят-ных для них условиях (например влияние гравитационных сил), имеют тенденцию увеличения. Возникают локальные центры ОНГ, которые притягивают информацию тем больше, чем больше растёт ОНГ. Это является одной из исходных предпосылок появления многообразия систем в универсуме.
      Кажущаяся субъективность определения размеров и границ систем объясняется бесконечностью разнообразия первичных систем. Это даёт возможность моделировать их в сознании в виде огромного количества приближённых моде-лей. Неопределённость моделей только подтверждает сущест-вование многомерных систем первичной объективной реаль-ности. Даже при возникновении в мыслях человека модели или проекта будущей системы, эта модель, как вторичная реальность, существует в голове объективно. Если человек прогнозирует будущего, он моделирует превращение систем по времени.
      ИЕРАРХИЯ СИСТЕМ В УНИВЕРСУМЕ
      Пределы систем мы можем выбирать из огромного числа вариантов, соблюдая определённые условия целостности. Можно рассмотреть в качестве системы вес универсум. В то же время можно рассмотреть в качестве системы атом, атом-ное ядро. Наименьшими воображаемыми в настоящее время системами являются кванты энергетических полей: электро-магнитного, гравитационного и др.
      Основной закономерностью в отношениях между всеми системами и их элементами является иерархическая структура их общего расположения на многих уровнях [ 11 ]. Любая система сама уже имеет иерархическую структуру, её эле-менты образуют нижний уровень. Сама система с её струк-турой, общими свойствами и функциональной направлен-ностью образует более высокий уровень.
      Каждая система является частью или элементом системы более высокого уровня. В то же время система состоит из элементов, которые представляют собой тоже системы, состо-ящие из элементов более низкого уровня. Системы распола-гаются по закону потенциальной иерархичности систем. Уни-версум состоит из огромного числа уровней систем. По этому закону и универсум должен быть элементом системы ещё более высокого уровня. Эта система нам ещё неизвестна, но должна существовать. Условно можно её называть Богом. Иерархия наблюдается и в комплексе моделей реального мира, в нашем сознании - в мыслях, гипотезах, теории, прогнозах и чувствах.
      Иерархическая система не является одномерной, т.е. иерархии переплетаются между собой. Конкретные элементы или системы могут участвовать во многих иерархических комплексах. Как системы, так и элементы рассматриваются в иерархическом комплексе по критериям одной целевой на-правленности или целесообразности. Однако, системы или их элементы могут иметь много целевых направленностей. Тем самым они участвуют во многих целевых иерархических комплексах. Общий иерархический комплекс превращается в переплетённую в многомерном пространстве сложную сетку.
      Например, атом углерода может быть составным эле-ментом миллионов видов органических молекул. Каждая молекула, в свою очередь, является компонентом живых тканей разной структуры. Электронная структура атома уг-лерода, в зависимости от строения молекулы, несколько из-меняется. Но атом сохраняет свою целостность. Отдельный человек может быть участником в очень многих иерархически структурированных системах. Во первых, в системе всего человечества (декларированные права человека). Дальше он является гражданином (участвует в системе государства). Он работает в фирме или в организации, которые являются частью вышестоящих организаций. Он может быть религи-озным и участвует в деятельности церквей или сектов и т.д. В общем, человек не потеряя свою целостность, участвует в разных иерархиях на разных уровнях по разным целевым критериям.
      Конкретную книгу можно часто по содержанию и тема-тике классифицировать в состав многих иерархических комп-лексов. Известно, что во многих случаях трудно найти пра-вильный шифр для книги в библиографическом указателе. Например в книгах по кибернетике часто затрагиваются воп-росы других наук, достижения бионики, информатике, психо-логии, физики, математики и др. Следовательно, книга может принадлежать к иерархическому комплексу по многим об-ластям знаний. Часто существенные для одной науки данные и идеи спрятаны в книгах и журналах другой направлен-ности. Таким образом, каждый элемент или система нахо-дится под влиянием различных иерархических комплексов и при составлении их математических описаний необходимо использовать законы пересечения и объединения множеств.
      ИНТЕРАКЦИЯ МЕЖДУ СИСТЕМАМИ
      Системы могут обладать разной степенью открытости. Теоретически и практически не удалось полностью изолиро-вать ни одной системы. Информация может передаваться и через гравитационное поле, через поток нейтрино и др. путём. В реальном мире не могут существовать и полностью откры-тые системы, т.е. ничем не изолированные и не ограниченные от внешней среды. В таком случае они не являются система-ми по определению [ 16 ].
      Между системами происходит обмен массой, энергией и информацией (ОНГ). Причиной обмена является неравно-весное состояние систем, как во взаимодействии между эле-ментами, так и между системами. Исходной причиной нерав-новесия являются существующие в универсуме мощные пото-ки высококачественной (направленной) энергии и ОНГ. Ог-ромными запасами энергии и ОНГ обладает гравитационное поле, а также объединенное суперполе. Поскольку иерархии систем переплетаются между собой, то и внутрисистемные массо-, энерго- или инфообмены могут влиять на процессы в других иерархиях систем.
      Если бы в системах наблюдались полный беспорядок, хаос, разнообразие, то их со своими характерными свойства-ми не было бы. В реальном мире каждая система обладает структурой и упорядоченностью, которые измеряются коли-чеством ОНГ. Каждая система в мире обладает ОЭ и ОНГ (гл. 4). ОНГ как связанная информация нейтрализует часть ОЭ и даёт системе упорядоченность.
      Системы взаимодействуют между собой путём передачи массы, энергии, ОЭ и ОНГ. В процессе обмена как масса и энергия, так и ОНГ могут концентрироваться или рассеи-ваться. В процессе инфообмена информацией считается толь-ко такая связь между системами, в результате которой повы-шается количество ОНГ хотя бы одной системы. В остальных случаях мы имеем дело с рассеянием информации, массы или энергии, или просто шумом.
      Из-за ограниченности ресурсов происходит борьба, кон-куренция между системами за овладение ими. Та система, ко-торая притягивает от других больше материальных, энергети-ческих и информационных ресурсов и более эффективно их использует, та обладает более широкими возможностями для существования и развития. В результате этого происходит местная локализация ресурсов и ОНГ. Такой же отбор по эффективности происходит также между мысленными моде-лями реального мира в индивидуальном и общественном сознании.
      СТОХАСТИЧНОСТЬ И НЕЛИНЕЙНОСТЬ СИСТЕМ
      Абсолютно все системы в универсуме находятся в состоянии изменений и превращений. Скорость изменений варьируется в очень широких пределах от доли секунды до 1030 и более лет. Даже такие системы, которые кажутся при нашей жизни неизменчивыми, в космическом масштабе из-меняются. Например, солнечная система, атомы и их ядра. Распадается даже протон, которого до сих пор считали абсолютно прочным (время жизни 1031 -1033 лет). Причиной изменений являются потоки необъятных ресурсов массы, энергии и ОНГ в космосе, которые переведут системы в не-равновесное состояние.
      Любое превращение систем на микроуровне имеет слу-чайный, стохастический, вероятностный характер. На макро-уровне вероятностный характер процессов может быть скрыт средними значениями общих показателей. Однако временное постоянство структур не может преодолеть общую неопреде-лённость и вероятностный характер всех систем. Случайные, вероятностные отклонения наблюдаются уже в объединённом суперполе в абсолютном вакууме. Возникновение виртуаль-ных частиц (электронов, фотонов и др.) "из ничего" связано случайными флуктуациями. Невозможно описать точную ор-биту электрона вокруг ядра атома. Можно описать только вероятностное облако возможных орбит электрона в атоме. Точное определение количества движения или места располо-жения частиц ограничивается в микромире соотношением неопределённости.
      Неопределённость в универсуме и в системах существует не только из-за наших незнаний, недостаточности информа-ции, а из-за фундаментальных свойств вещества, энергии и ОНГ. Пространство состояния и изменения систем в много-мерном пространстве описываются нелинейными уравнени-ями, содержащие квадратные, кубические или многостепен-ные члены. Системы этих уравнений имеют несколько или много решений. Во многих местах многомерного пространства имеются точки, где незначительное изменение одного фактора может вызвать движение системы в нескольких альтернатив-ных направлениях. Причём выбор направления является со-вершенно случайным, равновероятным. Непредсказуем конк-ретный путь развития, как причинное следствие детерми-нированных законов. Мир случайный уже с самого начала. Учёные считают, что даже через доли секунд после "большого взрыва" вопрос выбора при возникновении между миром или антимиром решался случайно. Если были бы ничтожно мало изменены величины универсальных констант универсума, то развитие его произошло бы в совсем другом направлении. Обобщённым показателем упорядоченности в стохастических и нелинейных процессах является ОНГ систем.
      СТРУКТУРНЫЕ УРОВНИ СИСТЕМ
      Любая сложная система обладает иерархической струк-турой. Они содержат подсистемы, которые флуктуируют, в то же время сохраняя свою устойчивость, динамичность, пре-емственность и характерные свойства.
      Система может быть охарактеризована, по мере повы-шения сложности, следующими показателями: параметрами состояния, упорядоченности, структуры, организованности, управляемости. Сущность двух последних показателей расс-матривается в главах 11 и 13. Состоянием системы назы-вается точка или область расположения его в многомерном пространстве состояния. На сложные системы оказывает вли-яние огромное количество факторов (независимых перемен-ных) и математическая обработка их действия связана с большими трудностями. В качестве меры упорядоченности системы R обычно определяют степень отклонения её состоя-ния от термодинамического равновесия, т.н. введенную Шен-ноном величину "избыточности".
      R = 1 ? ОЭф , где: ОЭф - фактическая ОЭ системы ОЭм ОЭм - максимально возможная ОЭ
      R = 0, если система находится в состоянии полного беспорядка (ОЭф = ОЭм)
      R = 1, для идеально упорядоченной системы, ОЭф = 0
      Наиболее существенной характеристикой систем явля-ется их структура, что определяет количество составляющих их элементов и их взаимоотношение. Дефиниций структур много, но приведём здесь некоторые:
      1. Структура, это вид взаимосвязи элементов в системе, зависящий от закономерностей, по которым элементы находятся во взаимных влияниях.
      2. Cтруктура, это упорядоченность (композиция) эле-ментов, сохраняющаяся (инвариантная) относительно определённых изменений (преобразований).
      3. Структура, это относительно устойчивый, упоря-доченный способ связи элементов, придающий их взаимодействию в рамках внутренной расчленён-ности объектов целостный характер [ 14 ].
      Во всех формулировках для структуры прямо или косвенно подтверждается необходимость введения третьего компонента как дополнительной характеристики системы, кроме элементов и их взаимоотношений. Компонент назы-вается по разному, но существо его выражается в общесис-темных свойствах, целевых критериях и общих закономер-ностях.
      В общем, для обеспечения упорядоченности должны су-ществовать какие-то общие принципы, критерии, сущест-венные свойства. Как объясняется в дальнейшем, эти общие принципы носят общее название обобщённой негэнтропии или связанной информации (ОНГ).
      НЕРАВНОВЕСНОСТЬ СИСТЕМ
      В абсолютно равновесных системах энтропия достигает максимально возможную величину при данном количестве элементов. Элементы при ЭО макс. действуют неограниченно "свободно", независимо от влияния других элементов. В сис-теме отсутствует какая-либо упорядоченность.
      Очевидно, абсолютного хаоса в системах не существует. Все существующие реально системы имеют в структуре менее или более заметный порядок и соответствующую ОНГ. Чем больше система имеет в структуре упорядочённость, тем боль-ше она удаляется от равновесного состояния. С другой сторо-ны неравновесные системы стремятся двигаться в сторону термодинамического равновесия, т.е. увеличивать свою ОЭ. Если они не получают дополнительную энергию или ОНГ, они не могут в длительное время сохранять своё неравно-весное состояние. Но равновесие может быть и динами-ческим, где процессы протекают в равном объёме в противо-положные стороны. Внешне сохраняется равновесие, т.е. устойчивость системы. Если скорость таких процессов мало изменяется, то такие режимы являются стационарными, т.е. относительно стабильными во времени. Скорость процессов может изменятся в очень широких пределах. Если скорость процессов очень маленькая, то система может находится в состоянии локального квазиравновесия, т.е. кажущегося рав-новесия. Неравновесность систем играет существенную роль в их инфообмене. Чем больше неравновесность, тем больше их чувствительность и способность принимать информацию и тем больше возможности саморазвития системы.
      ЦЕЛОСТНОСТЬ СИСТЕМ
      Целостность систем вытекает из одного их признака - упорядоченности. Однако, их цели или целесообразность можно определить только получая информацию о выше-стоящей системе. В то же время целостность и целенаправ-ленное действие системы или её элементов может иметь раз-ные степени упорядоченности. Например, в сложных систе-мах и в организациях может быть центральное управление вместе с относительной самостоятельностью индивидов [ 15 ]. Целостность систем вытекает из общих свойств объединён-ного суперполя в универсуме (гл. 14). К таким свойствам считают гармонию и когерентность, общие свойства квантовой природы явлений (т.н. квантовый холизм) и вероятностная природа флуктуации и процессов развития.
      ПРОСТРАНСТВЕННЫЕ ПОЛЯ И ВОЛНЫ
      КАК СИСТЕМЫ
      В универсуме существуют различного рода поля, кото-рые могут быть "в состоянии покоя" или находиться в воз-буждённом состоянии (образования волн, виртуальных час-тиц и др.) Известно много типов полей:
      гравитационное поле;
      электромагнитное поле (свет, радиоволны и др.);
      поля малого и большого взаимодействия;
      квантомеханические поля (позитронное поле).
      Все поля соединяются в сверхмалом пространстве (ниже длины шкалы Планка, 10-35 м) в объединённое суперполе, из возбуждения которого могут возникать элементы вещества, энергии и ОНГ. Недостаточно доказано как-будто существо-вание вокруг живых существ ещё особого рода полей: фан-томного, астрального, ментального и торсионного (спинового) поля. Высказано предположение ещё о наличии информа-ционного поля. Связанная форма информации - ОНГ содер-жится в каждой системе вместе с массой и энергией. Однако её определение, также как и выяснение процессов её прев-ращения и переходов часто представляет большие трудности.
      По вопросу упорядоченности, энтропии поля высказаны различные мнения. С одной стороны утверждается, что поля обладают бесконечной энтропией, разнообразием, беспоряд-ком. С другой стороны считалось, что объединённое супер-поле имеет нулевую энтропию, что оно обладает абсолютной упорядоченностью, бесконечным ОНГ, энергией. В действи-тельности, как и все системы, любое поле имеет как ОЭ, так и ОНГ. Чем больше поле локально возбуждается, вибри-руется с образованием волн и материальных частиц, тем боль-ше оно содержит ОНГ. Конечно, в поле значительно труднее определить характерных для системы признаков: элементов, их взаимоотношение и целостность. Однако, и здесь признаки системной дифференциации элементов в любом случае су-ществуют. В качестве первичных элементов поля как системы выделяются кванты. Выяснено, что квантовое дискретное строение имеют не только электромагнитные, но и гравитаци-онные волны и даже пространство и время. Система может быть комбинирована из различных полей, с квантами раз-личного энергосодержания и разной степенью их когерент-ности. Исследование квантовой структуры полей даёт воз-можность выяснить содержание в них связанной информа-ции - ОНГ.
      СИСТЕМНЫЙ ПОДХОД И СИСТЕМНЫЙ
      АНАЛИЗ
      Поскольку вес универсум состоит из систем, притом в виде различных комплексов, иерархических уровней и совме-щений, то представляют огромную важность методы их иссле-дования и преобразования. Этими вопросами уже давно зани-маются такие дисциплины, как исследование систем, систем-ный анализ и др. Однако, эти методы не нашли ещё доста-точно широкого и всестороннего применения. Причиной явля-ются сложности исследования процессов хранения и передачи информации в системах, а также отсутствие методических ос-нов. С этими связано неполное описание систем и их превра-щений. Соединение методов системного анализа с другими науками, теорией информации, векторным анализом в много-мерном пронстранстве состояния и синергетикой открывает в этой области новые возможности. При исследовании любого объекта или явления необходим системный подход, что включает следующие основные этапы работы:

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15