Современная электронная библиотека ModernLib.Net

Солнечное вещество (сборник)

ModernLib.Net / Матвей Бронштейн / Солнечное вещество (сборник) - Чтение (Ознакомительный отрывок) (стр. 2)
Автор: Матвей Бронштейн
Жанр:

 

 


Так почему же у азота, добытого из воздуха, вес больше? Почему «воздушный» азот – исключение? Уж не было ли какой ошибки в опыте с воздушным азотом?

Рэлей решил взвесить воздушный азот еще раз. Он снова взял несколько литров воздуха и тщательно очистил их от кислорода. Оставшимся азотом он наполнил стеклянный шар и взвесил – теперь уже в третий раз.

Упрямые весы продолжали показывать одно и то же. Литр воздушного азота весил не 1,2507, а 1,2565 грамма.

Разница ничтожная. Начинается она всего только с тысячных долей, с третьей цифры после запятой.

Но один литр азота ни в коем случае не должен весить больше другого литра азота даже и на тысячную долю!

Значит, тут кроется какая-то тайна.

Неизвестная примесь

Рэлей написал письмо о своих опытах в лондонский научный журнал «Nature» (по-русски это значит «Природа»).

Редакция журнала напечатала письмо Рэлея.

«Азот, – писал Рэлей, – весит совершенно одинаково, откуда бы его ни добыть – из азотистокислого аммония, из аммиака, из мочевины, из селитры. Одно только есть исключение: азот, добытый из воздуха. Азот воздуха тяжелее, чем азот аммиака, мочевины, селитры. Значит, азот воздуха – это какой-то особенный азот. Не сумеет ли кто-нибудь из химиков объяснить аномалию (ненормальность) воздушного азота?»

Журнал «Nature» – очень известный журнал. Не только в Англии, но и на всем земном шаре нет такого физика или химика, который не читал бы журнала «Nature».

Физики и химики всего мира прочитали письмо Рэлея, но тщетно ждал он ответа. Никто не отозвался на его письмо, никто не сумел объяснить аномалию воздушного азота.

Тогда Рэлей обратился за советом к своему приятелю, лондонскому профессору химии Вильяму Рэмзэю. Он подробно рассказал Рэмзэю о своих опытах и предложил ему вместе заняться расследованием вопроса о том, почему литр «воздушного» азота на целых 6 миллиграммов расходится в весе с литром всякого другого азота.


Вильям Рэмзэй


Рэлей и Рэмзэй долго спорили о причинах непонятного расхождения в 6 миллиграммов. Наконец Рэмзэю пришла в голову догадка: а что, если азот, добытый из воздуха, – не чистый азот? Надо бы узнать, нет ли в нем какой-нибудь неожиданной примеси, какого-нибудь тяжелого газа, который и дает эти лишние шесть миллиграммов. Что же это за газ?

Рэмзэй еще ничего не знал о нем. Одно только было несомненно: этот газ должен быть тяжелее азота. Если бы он был легче, то и азот, к которому подмешан какой-то процент этого газа, был бы легче, а не тяжелее стопроцентного азота. Ведь стакан чистого песка легче стакана, наполненного смесью песка и свинцовой дроби.

Но если к азоту воздуха подмешан какой-то тяжелый газ, то как могло случиться, что химики его не заметили? Химики делали много опытов с воздухом, – почему же они до сих пор не обнаружили, что в воздухе, если его очистить от пыли, водяных паров и углекислоты, есть, кроме кислорода и азота, еще какой-то третий газ?

Рэлей и Рэмзэй стали рыться в книгах и журналах. Они перечитывали описания всех опытов с воздухом, когда-либо проделанных учеными. Но нигде не отыскали они ни единого слова, которое могло бы подтвердить их догадку о существовании третьего газа.

И только в одной старинной книге, где описывались опыты с «мефитическим газом» (так химики восемнадцатого столетия называли азот), Рэлей и Рэмзэй наткнулись на одно место, которое заставило их насторожиться.

Забытый опыт

В конце восемнадцатого века жил в Лондоне ученый химик, которого звали Генри Кэвендиш. Это был нелюдимый и одинокий человек. Он появлялся на улицах с узловатой палкой, в длинном дедовском сюртуке и в широкополой шляпе. О его странностях и причудах по городу ходило множество слухов и басен. Передавали, будто нелюдимость его и суровость доходят до того, что иной раз за целый день он не произносит ни одного словам Говорили еще, что он очень богат и всё свое огромное состояние тратит на всякие опыты и на покупку научных машин и приборов. Об опытах своих и открытиях он никому не рассказывает: опытами и открытиями он занят для собственного удовольствия, и мнение других людей нисколько его не интересует[7]. Еще говорили, что Кэвендиш устроил у себя в доме библиотеку научных книг и открыл в нее доступ всем, кто пожелает ею пользоваться. Каждый посетитель может унести к себе домой любую книгу, оставив хозяину расписку. Шутники утверждали, будто сам Кэвендиш так строго и точно соблюдает установленные им в библиотеке порядки, что всякий раз, когда ему случается взять книгу из собственного книжного шкапа, он выдает себе расписку: «Такого-то числа такую-то книгу взял у Генри Кэвендиша Генри Кэвендиш».


Генри Кэвендиш


Чудак Кэвендиш давно умер. Давно забыта его широкополая шляпа, его сюртук, его причуды. Но физики и химики помнят, что Генри Кэвендиш первый открыл, из чего состоит вода, и первый вычислил, сколько весит земной шар.

А в 1785 году, изучая свойства «мефитического газа» – азота, он проделал опыт, который через сто девять лет научил Рэлея и Рэмзэя, как разгадать тайну воздушного азота.

Генри Кэвендиш взял стеклянную трубку, изогнутую в виде латинской буквы U. Наполнив трубку смесью азота с кислородом, он вставил ее в рюмки со ртутью – одним концом в одну рюмку, другим в другую. А потом стал через смесь азота и кислорода гнать электрические искры.

В наше время есть много усовершенствованных машин для добывания электрических искр – индукционная катушка Румкорфа, высоковольтные трансформаторы, генераторы высокого напряжения. Но во времена Генри Кэвендиша всех этих машин еще не было. Ученые знали только один способ добывать электрическую искру: трение. Кэвендиш получал электрические искры трением стекла о кожу. В машине, которая была у него в лаборатории, большое стеклянное колесо, вращаясь, терлось о кожаные подушки. Стекло и кожа заряжались электричеством, и это электричество Кэвендиш отводил по проволокам в рюмки со ртутью, – электричество стекла в одну рюмку, электричество кожи в другую. Когда электричества в рюмках скоплялось достаточно, электрические искры начинали скакать из одной рюмки в другую по изогнутой трубке, наполненной смесью азота с кислородом.



Кэвендишу это и было нужно. Он знал, что под действием электрических искр кислород вступает в химическое соединение с азотом.

И в самом деле, как только посыпались искры, стеклянная трубка наполнилась оранжево-красным дымом. Оранжево-красный дым – это окислы азота, соединение азота с кислородом. Кэвендиш набрал в пипетку раствор едкого натра и впустил несколько капель этой жидкости внутрь изогнутой трубки. Оранжевый дым сейчас же исчез. Он без остатка растворился в едком натре.



Но Генри Кэвендиш решил гнать искры через трубку до тех пор, пока весь кислород и весь азот, запертые в ней, не превратятся в окислы азота. Это была трудная задача. Искры получались у Кэвендиша слабенькие, да и следовали они одна за другой не сразу, а через большие промежутки – не то, что в теперешних машинах, где искры сыплются непрерывным потоком. Целых три недели, днем и ночью, сменяя друг друга, Кэвендиш и его слуга вращали стеклянное колесо электрической машины. Азот и кислород в трубке медленно соединялись друг с другом, превращаясь в оранжевый дым. Едкий натр уничтожал этот дым, впитывал его в себя. Все меньше и меньше азота с кислородом оставалось в трубке. А освободившееся место заполнила ртуть. И с каждым днем в обоих коленах трубки уровень ртути делался все выше и выше.

Наконец, через три недели, работа была окончена. Ртуть заполнила оба колена трубки. Значит, весь азот, который был в трубке, соединился с кислородом и вместе с ним растворился в едком натре.

Но, приглядевшись внимательнее, Кэвендиш увидел над ртутью и едким натром крохотный пузырек газа. Кэвендиш еще раз пропустил электрическую искру. Но пузырек не исчезал.

Генри Кэвендиш, по своему обыкновению, точно записал все подробности опыта. Не забыл он упомянуть и о крошечном пузырьке.

Пузырек – писал Кэвендиш – это был остаток азота, который почему-то не удалось соединить с кислородом.

«Обрати внимание!»

Рэмзэй не в первый раз читал об этом опыте. Когда он еще не был профессором химии, а был всего только молодым студентом, он перелистывал однажды биографию Кэвендиша. В книге были приведены отрывки из лабораторного журнала, в который Кэвендиш день за днем вносил все подробности своих опытов. Упоминание о крохотном пузырьке, не пожелавшем соединяться с кислородом, удивило Рэмзэя. И на полях книги, как раз против строчек о таинственном пузырьке, Рэмзэй написал карандашом: «look into this» («обрати внимание»).

Впоследствии Рэмзэй позабыл о пузырьке: у него нашлись задачи поинтереснее, чем проверка опытов, проделанных старым чудаком сто лет тому назад. Но теперь, когда он вместе с Рэлеем задумал объяснить аномалию воздушного азота, он сразу разгадал тайну пузырька. Ведь азот-то для своих опытов Кэвендиш добывал не из аммиака, не из селитры, а из воздуха! И при этом азот, который он добыл из воздуха, не весь соединился, с кислородом, сколько ни бился над ним старый Кэвендиш. В изогнутой трубке – так писал сам Кэвендиш – от всего азота остался лишь маленький пузырек, но пузырек этот был особенный, не похожий на обыкновенный азот: никакие искры не могли заставить его соединиться с кислородом.

И вот у Рэмзэя мелькнула мысль: а что, если этот пузырек был вовсе не азот, а какой-то другой, не замеченный химиками газ, подмешанный к воздушному азоту? Верно, этот неизвестный газ – и есть та самая примесь, которая делает каждый литр воздушного азота на целых 6 миллиграммов тяжелее, чем литр азота из аммиака или селитры.

Но как узнать, верно это или нет? Как проверить эту догадку?

А вот как: если такой газ в самом деле существует, нужно во что бы то ни стало разлучить его с азотом.

Примесь найдена

Физик Рэлей и химик Рэмзэй заперлись в своих лабораториях и стали порознь решать задачу: как извлечь из воздушного азота спрятанную в нем примесь? Они условились не выходить из лабораторий до тех пор, пока неизвестная примесь не будет выделена. А для того, чтобы каждый знал, как идут дела у другого, они ежедневно обменивались через посыльного письмами и протоколами опытов.

Рэлей решил попросту повторить опыт Кэвендиша, но в гораздо больших размерах. Ему-то это было легко: ведь в его время физики располагали такими электрическими приборами, о которых Кэвендиш, за сто лет перед тем, не смел и мечтать. Если к азоту и в самом деле подмешан какой-то неизвестный газ, не соединяющийся с кислородом, то теперь возможно добыть не крошечный пузырек этого газа, как сделал Кэвендиш, а по крайней мере несколько кубических сантиметров. И тогда будет нетрудно изучить этот газ, узнать его химические свойства, взвесить его на точных весах.

Рэлей взял стеклянный баллон и впаял в него две проволоки. Внутри баллона между концами проволок оставалось расстояние в несколько сантиметров. Наружные концы проволок торчали из баллона. Рэлей соединил их с высоковольтным трансформатором.

Когда будет включено электрическое напряжение, внутри баллона с кончика одной проволоки на кончик другой, через маленький промежуток в несколько сантиметров, поскачут электрические искры.

Рэлей накачал в баллон несколько литров азота и кислорода, а потом стал вгонять туда насосом раствор едкого натра. Едкий натр фонтаном врывался в баллон и вытекал из него по особой стеклянной трубочке.



В то же время Рэлей включил электрическое напряжение.

Посыпались искры, и под действием этих искр азот стал вступать в химическое соединение с кислородом. Рэлею только этого и надо было: он знал, что едва лишь азот соединится с кислородом, его можно будет выгнать из баллона с помощью едкого натра. Едкий натр – об этом писал и Кэвендиш – поглощает соединение азота с кислородом.

И в самом деле: через несколько часов весь азот, который был в баллоне, соединился с кислородом и ушел прочь из баллона вместе со струей едкого натра.

Азот ушел из баллона, но баллон не совсем опустел. На это указывал манометр – прибор, которым измеряют давление газа на стенки сосуда. Значит, в баллоне остался какой-то газ, – очевидно тот самый подмешанный к азоту газ, который так упорно искали Рэлей и Рэмзэй.

Этот газ не соединяется с кислородом, не растворяется в едком натре. Потому-то он и остался в баллоне.

Рэлей тщательно просушил и профильтровал новый газ, продувая его через фарфоровую трубку с горячими медными опилками. Горячие медные опилки очистили газ и от того ничтожного количества кислорода, которое все еще в нем оставалось.

Так Рэлей решил свою задачу – выделил неизвестный газ, подмешанный к азоту.

А как решил ту же задачу Рэмзэй?

Он поступил иначе. В его химической лаборатории не было высоковольтного трансформатора, какой был в лаборатории физика Рэлея. Но Рэмзэй был опытным химиком. Ему и без трансформатора удалось разлучить азот с неизвестным газом.

Он достал трубочку из тугоплавкого стекла, насыпал в нее кусочки магния и засунул ее в электрическую печку.

Когда печка нагрелась, кусочки магния раскалились докрасна.

Тогда Рэмзэй взял насос и стал гонять взад и вперед по этой трубочке азот, добытый из воздуха.

Раскаленный магний – это ловушка для азота: магний впитывает его в себя. Десять дней подряд гонял Рэмзэй по трубочке несколько литров азота. Наконец весь азот был поглощен раскаленным магнием.

Но в трубочке остался газ, который ни за что не соглашался соединиться с магнием.

Рэлей и Рэмзэй шли разными путями, но пришли к одной и той же цели. Неизвестный газ был пойман, выделен, очищен и заперт в стеклянный баллон.

Ленивый газ

Оба ученых сейчас же принялись изучать новооткрытый газ. Наконец-то им удалось взвесить его на весах в чистом виде и узнать, правильна ли догадка Рэмзэя, что новый газ тяжелее, чем азот.

Да, тяжелее. Почти в полтора раза.

Так было объяснено расхождение в весе между «воздушным» и «аммиачным» азотом.

После этого Рэлей и Рэмзэй стали проделывать с новым газом всевозможные химические опыты. Они уже знали, что он не соединяется ни с кислородом, ни с магнием: ведь потому-то им и удалось извлечь его из азота.

Но с какими же веществами он соединяется?

Множество разных веществ испытали Рэлей и Рэмзэй. Они попробовали соединить новый газ с водородом, с хлором, с фтором, с металлами, с углем, с серой. Но всё было напрасно: газ упорно отказывался вступать в химическое соединение. Не помогло ни сильное нагревание, ни сжатие, ни электрические искры, ни прикосновение губчатой платины, – словом, ни один из многочисленных способов, которые применяют химики, чтобы заставлять вещества соединяться друг с другом.

В конце концов Рэлей и Рэмзэй вынуждены были прийти к заключению, что нет на свете такого вещества, с которым мог бы соединиться открытый ими газ.

Ученые еще никогда не встречали газа, обладающего таким странным свойством. Рэлей и Рэмзэй придумали для него название «аргон». По-гречески это значит «ленивый».

Победа точности

В августе 1894 года в старинном университетском городке Оксфорде состоялся съезд английских физиков, химиков, естествоиспытателей. На этом съезде Рэлей впервые рассказал о новом открытии. Его доклад вызвал удивление и недоверие. Еще бы! Каждый школьник знает, что воздух состоит из кислорода и азота. Так написано во всех учебниках. А Рэлей и Рэмзэй решаются утверждать, что в каждом литре воздуха, самого обыкновенного воздуха, того воздуха, которым мы дышим, есть еще девять кубических сантиметров нового, не замеченного химиками газа.

Девять кубических сантиметров на литр – это не так уже мало. «В каждом кубометре воздуха, – утверждал в своем докладе Рэлей, – содержится около пятнадцати граммов аргона. В зале, в котором заседает съезд, по этому расчету должно содержаться несколько пудов аргона».

С удивлением выслушали химики рассказ Рэлея.

Но еще больше удивились они, когда Рэлей заявил, что берется доказать существование аргона при помощи… трубок для курения табака! Рэлей тут же взял восемь таких трубок – восемь прямых коротких трубок из обожженной глины, какие курят англичане, – и соединил их гуттаперчевыми креплениями. Получилась одна прямая и длинная труба. Он вставил ее в стеклянный сосуд, соединенный с воздушным насосом: труба входила в сосуд через отверстие в крышке, а выходила через отверстие в дне.

Все щели прибора Рэлей тщательно залил сургучом.

Потом он принялся гнать по трубе добытый из воздуха азот.

Азот втекал в один конец трубы, а из другого вытекал в газометр. Но вытекал не весь, – большая часть его терялась по дороге. Ведь обожженная глина – это пористый материал со множеством микроскопических трещинок и лазеек. Через эти-то лазейки азот и просачивался наружу – в сосуд. А для того, чтобы он просачивался еще быстрее, из сосуда все время выкачивали воздух. Лишь ничтожным остаткам азота удавалось пройти через трубу от одного конца до другого и попасть в газометр.

Рэлей взял из газометра кубический сантиметр газа и на глазах у химиков взвесил его. Оказалось, что он был на целых двенадцать-пятнадцать процентов тяжелее, чем кубический сантиметр обыкновенного азота.

И вот Рэлей предложил съезду вопрос: как объяснить этот удивительный опыт? Почему азот, пройдя по глиняной трубке, сделался более тяжелым газом? Неужели же простая глиняная трубка отличается какими-то особыми волшебными свойствами?

Есть только одно объяснение: по глиняной трубке проходил не азот, а смесь азота с каким-то более тяжелым газом. Оба газа терялись по дороге, просачиваясь сквозь глину в стеклянный сосуд. Но терялись они не одинаково: легкий газ просачивался быстрее, а тяжелый – медленнее[8]. И вот потому-то в газометре оказалось больше тяжелого газа, чем легкого. Это была уже не смесь азота с аргоном, а почти чистый аргон.

Другого объяснения нет и не может быть. Опыт с восемью курительными трубками наглядно доказал существование нового газа.

Для большей убедительности Рэлей и Рэмзэй продемонстрировали оксфордскому съезду и чистый аргон, добытый в опыте с электрическими искрами и в опыте с раскаленным магнием. Съезду пришлось поверить в аргон.

Новый газ, не соединяющийся ни с какими другими веществами, получил в августе 1894 года полное признание. Вслед за английскими химиками его признали и химики во всех других странах.

История аргона началась с разницы в числах – 1,2507 и 1,2565. Разница очень ничтожная: какие-то тысячные доли, третья цифра после запятой. Но эта третья цифра выдала аргон с головой.



Если бы старый Кэвендиш обнаружил эту третью цифру после запятой, он понял бы, что значил его крошечный пузырек газа.

Он держал аргон в руках, но аргон остался неоткрытым.

У Кэвендиша не было тех чувствительных и тонких приборов, которыми взвешивали тысячные доли грамма Рэлей и Рэмзэй. У Кэвендиша не было точных весов.

Открытие аргона в конце девятнадцатого века – это была победа точности, победа третьей цифры после запятой.

Это была победа весов.

С неба на землю

Однажды утром в феврале 1895 года Рэмзэй получил письмо от лондонского химика Генри Майерса. Майерс писал, что в одном из старых номеров американского геологического журнала была помещена интересная статья, на которую теперь, после открытия аргона, следовало бы обратить внимание.

Автор статьи – геолог Хильдебранд – утверждал, что некоторые очень редкие минералы обладают замечательным свойством. Если их кипятить в серной кислоте, они выделяют какой-то газ, который не поддерживает горения и сам не горит, – по мнению Хильдебранда, азот. Один из минералов, выделяющих такой негорючий газ, – это клевеит. Он был найден в Норвегии знаменитым полярным путешественником Норденшельдом, который обнаружил черные зернышки и прожилки клевеита в некоторых горных породах.

«Быть может, – писал Майерс, – газ, полученный из клевеита, совсем не азот, а новый газ аргон?»

Рэмзэй сперва не заинтересовался сообщением Майерса. В то время он был занят важным делом – точным измерением плотности и теплоемкости аргона. Он прочел письмо и отложил его в сторону. Но через несколько недель, когда измерения были закончены, он вспомнил о Майерсе, перечел письмо и сразу взялся за дело. Он позвал мальчика, прислуживавшего в лаборатории, и велел ему достать какможно больше клевеита. Мальчик обошел все химические магазины Лондона и к полудню принес Рэмзэю один грамм клевеита. Это стоило 3 шиллинга и 6 пенсов.

Рэмзэй и его ассистент Мэтьюз приступили к опыту. Они стали прогревать кусочек клевеита в пробирке с серной кислотой и уже к вечеру того же дня извлекли несколько кубических сантиметров газа.

Четыре дня ушло на то, чтобы очистить газ от тех примесей, которые легко соединяются с другими веществами. Примесей было немного – большая часть газа ни с чем не хотела соединяться.

Очищенный от примесей газ Рэмзэй ввел в стеклянную трубочку для наблюдения спектра.

Эта трубочка посередине очень узка, а у концов пошире. С обоих концов в нее впаяны платиновые проволочки. Когда нужно изучить спектр какого-нибудь газа, этим газом наполняют трубочку и запаивают ее. Затем по платиновым проволочкам через трубочку пропускают электрический ток. Под действием тока в самом узком месте трубочки газ начинает ярко светиться, и тогда с помощью спектроскопа можно рассмотреть его спектр.



Рэмзэй прекрасно знал, какой у аргона спектр. В этом спектре должны ярко светиться оранжевые и зеленые линии.

Но у газа, который вышел из клевеита при нагревании, линии оказались иные: желтая линия и несколько слабых линий других цветов.

В первую минуту Рэмзэй был готов подумать, что эту желтую линию дает натрий. Уж не попала ли каким-нибудь образом в спектроскопическую трубочку пылинка натрия? Может быть, к платиновым проволочкам пристала какая-то грязь, в которой был натрий? Но ведь спектроскопическую трубочку Рэмзэй приготовил собственными руками, а у него не было привычки брать для работы грязные платиновые проволочки. А может быть, дело тут не в посторонней примеси, а в самом спектроскопе? Может быть, желтая линия, которую увидел Рэмзэй в спектре, была не настоящей линией, а «привидением»? (Спектроскописты называют «привидениями» и «духами» те линии, которые появляются в спектре из-за неисправности спектроскопа.)

Рэмзэй разобрал свой спектроскоп, протер замшевой тряпочкой призму, проверил щель. Все было в полном порядке. И все-таки, когда он вновь собрал спектроскоп, желтая линия загорелась на прежнем месте. Она не хотела уходить. Она не была привидением.

Как же в конце концов проверить – совпадает ли эта желтая линия с желтой линией натрия?

Рэмзэй нарочно ввел в трубочку немножко натрия, снова запаял ее и принялся рассматривать спектр.

Прежняя желтая линия осталась на месте, но рядом с ней появилась другая, на этот раз настоящая линия натрия.

Теперь уж больше не оставалось ни малейших сомнений в том, что первая желтая линия принадлежит не натрию, а какому-то другому веществу. Но какому же?

Рэмзэй перебрал в памяти спектры всех известных ему веществ. Ничего подходящего он не мог припомнить. Наконец после долгих размышлений он вспомнил о той желтой линии D3, которую открыли Жансен и Локайер тридцать лет назад. По своему расположению в спектре она как будто совпадает с загадочной желтой линией, которую нашел Рэмзэй. А если это так, то газ, выходящий из клевеита, – не азот, не аргон, а солнечный газ – гелий.

У Рэмзэя не было приборов, чтобы точно определять положение линий в спектре. Поэтому он послал спектроскопическую трубочку с новым газом лондонскому физику Вильяму Круксу – одному из лучших тогдашних специалистов по спектроскопии. Осторожный в своих научных выводах, Рэмзэй утаил от Крукса свое предположение, что найденный им газ – это гелий. Он написал только, что нашел какой-то новый газ, который предлагает назвать «криптоном», и просит Крукса тщательно определить положение всех линий в спектре нового газа.

Крукс пропустил через криптон электрический ток. И вот в спектроскопе вспыхнула та самая желтая линия гелия, которую Жансен и Локайер нашли в спектре солнечных выступов.

Значит, в присланной от Рэмзэя трубочке находится то самое таинственное вещество, которого не держал в руках ни один человек на земле.

Крукс послал Рэмзэю городскую телеграмму. В ней было всего несколько слов:


Crypton is Helium. Come and see it. Crookes.


По-русски это означает: «Криптон это гелий. Приезжайте – увидите. Крукс».

Так был найден на Земле гелий, найденный на Солнце за 27 лет перед тем.

Рэмзэй немедленно приехал в лабораторию Крукса, и они вместе занялись подробным изучением спектра гелия. Кроме желтой линии D3, они обнаружили в спектре гелия еще пять линий: две красные, одну зеленую, одну синюю и одну фиолетовую. Эти линии не были замечены астрономами потому, что в спектре солнечных выступов они горят недостаточно ярко. Гелий, найденный на Земле, дал ученым возможность полнее и подробнее рассмотреть его спектр.

После измерений Крукса уже нельзя было сомневаться в том, что найденный Рэмзэем газ есть действительно гелий[9].

В тот же день – 23 марта 1895 года – Рэмзэй решился опубликовать свое открытие. Он послал короткое сообщение Лондонскому Королевскому обществу (так называется высшее научное учреждение в Англии) и одновременно написал письмо известному французскому химику академику Бертело с просьбой сообщить Парижской Академии наук об открытии гелия на Земле.

В истории открытий бывают странные совпадения.

Через две недели после Рэмзэя другой химик, швед Ланглэ, тоже добыл гелий, тоже из клевеита, и сообщил о своем открытии тому же академику Вертело. Письмо его было помечено 8-м апреля 1895 года.

Новая задача

Как только Рэмзэй добыл из клевеита гелий, он сейчас же стал проделывать с ним разнообразные опыты. Ведь он был первый химик на свете, которому посчастливилось держать в руках солнечное вещество.

Гелий, открытый на Солнце, нельзя было взвешивать. Астрономы только догадывались, что это один из легчайших газов. Рэмзэй впервые взвесил гелий. Он убедился, что астрономы были правы: гелий и в самом деле оказался очень легким газом. Изо всех газов один только водород легче гелия, а все другие тяжелее. Воздух тяжелее гелия почти в семь раз.

Потом Рэмзэй решил испытать, может ли гелий химически соединяться с другими веществами.

Он перепробовал множество веществ, но ни с одним из них гелий не захотел соединяться.

Значит, гелий тоже ленивый газ, как и аргон.

А если так, то не поискать ли его в воздухе? Ведь газ, который не желает соединяться с другими веществами, непременно уйдет в воздух. Даже если он находится в недрах земли, в горных породах, то и тогда проберется он в атмосферу по трещинкам и порам.

Как же узнать, есть ли в атмосфере гелий? Как добыть гелий не из редкого минерала клевеита, а из самого обыкновенного воздуха?

Если правда, что гелий растворен в воздухе, то есть только один способ извлечь его оттуда.

Нужно удалить из воздуха все другие газы – убрать кислород, убрать азот, убрать аргон. То, что останется, это, верно, и будет гелий.

Но как же это сделать? Как удалить из воздуха кислород, азот и аргон?

Кислород удалить нетрудно. Рэмзэй знал, что раскаленная медь поглощает кислород, присоединяет его к себе. Батарея фарфоровых трубок, наполненных раскаленными медными опилками, – вот прибор для удаления кислорода из воздуха. Насосы гонят воздух по трубкам – из одной в другую, – и по дороге кислород застревает в раскаленных опилках. И вот из батареи в закрытый сосуд, в газометр, течет уже не воздух, а воздух минус кислород, воздух, освобожденный от кислорода.

После кислорода легко убрать и азот. Тут уж не медь нужна, а другой металл – магний. Нужно взять такие же фарфоровые трубки, но наполнить их не раскаленной медью, а раскаленным магнием. Из второй батареи в газометр будет вытекать не воздух, а воздух минус кислород и минус азот.

Ну, а как быть с аргоном? Ведь аргон – ленивый газ: он не соединится ни с магнием, ни с медью. Нет такого раскаленного металла, который мог бы впитать в себя аргон. Он пройдет через обе батареи и не застрянет в пути.

И гелий тоже ленив, он тоже не застрянет в раскаленных опилках. Вместе с аргоном он проскочит через обе батареи.

Как же отделить гелий от аргона? Как из смеси аргона с гелием добыть чистый гелий?

Рэмзэй долго ломал себе голову над этой задачей. Если бы можно было найти такое вещество, которое соединяется с аргоном, но не с гелием, – тогда задача была бы решена. Аргон застрял бы в этом веществе, как раньше застряли кислород и азот, и в газометре остался бы чистый гелий.

Но ведь в том-то и беда, что такого вещества в природе нет. Ни одно вещество не соединяется с ленивым газом аргоном.

Значит, аргон нельзя удалить тем же способом, каким был удален кислород и азот.

Задача казалась неразрешимой.

Ключ к решению

Только после долгого раздумья Рэмзэй понял, что ему делать. Он вспомнил, как поступают химики, когда из смеси спирта с водой нужно добыть чистый спирт.

Спирт испаряется быстрее, чем вода. Этим-то и пользуются химики. Они нагревают смесь. Первые порции пара, поднимающиеся над жидкостью, – это пары чистого спирта. Следующие порции – это смесь паров воды и паров спирта. А последним идет уже чистый водяной пар.


  • Страницы:
    1, 2, 3