Современная электронная библиотека ModernLib.Net

Физические эффекты и явления

ModernLib.Net / Неизвестен Автор / Физические эффекты и явления - Чтение (стр. 9)
Автор: Неизвестен Автор
Жанр:

 

 


      Новый тип сегнетоэлектрического полинейного элемента тактандел-температурно автостабилизированный диэлектрический нелинейный элемент сам стабилизирует свою температуру вблизи точки Кюри.
      На возрастание электросопротивления в области температуры Кюри основаны сегнетоэлектрические термосопротивления с продолжительным температурным коэффициентом (ТКС- +60%/градус) -позисторы.
      7.7. Э л е к т р е т ы - электрические аналоги поэтапных магнитов Они длительно сохраняют наэлектризованное состояние и создают вокруг себя электрическое поле. Электреты получаются либо охлажденио нагретого диэлектрика (воска,церезина,нейлона ит.д.) в сильном электрическом поле , либо освещением (или радиоактивным облучением) фотопроводящих диэлектриков, также в сильном поле. Применение электретов связано в основном с наличием у них постоянного электрического поля.
      А.С.N 115132 Индивидуальный дозиметр радиоактивного излучения и другого проникающего излучения, состоящий из приемника излучения и измерительного пибора, отличающийся тем ,что с целью возможности определения суммарной дозы излучения за требуемый помежуток времени, его приемник выполнен в виде электрета,заключенного в герметический корпус, содержащий газ,например ,воздух.
      Здесь излучение ионизирует газ, ионы которого разряжают электрет.
      Л И Т Е Р А Т У Р А.
      Е.С. Кухаркин. Основы инженерной электрофизики, т1,2.м.,Высшая школа 1989г.
      Е.Е. Зибельрман. Электричество и магнетизм. М.,"Наука", 1970г.
      К 7.1. Таблицы физических величин.М., "Атомиздат",1976, стр.320
      Патент Франции 2005067
      К 7.2 Патент США 3586971.
      К 7.4. В.В.Лаврженко. Пьезоэлектрические трансформаторы. М., Энергия.,1975,
      А.С.517790, 504940;
      Патент США 3557616, 3558795
      К 7.5. Г.А.Смоленский, Н.Н. Крайник. Сегнетоэлектрики и антисегнетоэлектрики М.,"Наука",1968.
      Физический энциклопедический словарь т4,стр.11-12.
      8. МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА.
      8.1. Всякое вещество является магнетиком, т.е. способно под действием магнитного поля приобретать магнитный момент (намагничиваться). По величине и направлению этого момента, а также по причинам, его породившим, все вещества делятся на группы. Основные из них - диа и парамагнетики.
      8.1.1. Молекулы д и а м а г н е т и к а собственного магнитного момента не имеют. Он возникает у них только под действием внешнего магнитного поля и направлен против него. Таким образом результирующее магнитное поле в диамагнетике меньше, чем внешнее поле, правда, на очень малую величину. Это приводит к тому, что при перемещении диамагнетика в неоднороное магнитное поле он стремится сместиться в ту область, где напряжение магнитного поля меньше.
      Патент США 3 611 815: Гироскопическая система, практически свободная от трения, содержит цилиндрический ротор, концы которого окружены парой кольцевых постоянных магнитов. На каждом конце ротора установлена вставка из диамагнитного материала, взаимодействующая с соответствующим постоянным магнитом так, что создаются отталкивающие магнитные силы, которые удерживают ротор в состоянии, характеризующимся отсутствием физического контакта ротора с магнитом: ротор "всплывает" в магнитном поле практически без трения.
      8.1.2. Молекулы (или атомы) парамагнетика имеют собственные магнитные моменты, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающе внешнее. Парамагнетики втягиваются в магнитное поле.
      Так, например, жидкий кислород - парамагнетик, он притягивается к магниту.
      Магнитная проницаемость конкретного вещества зависит от многих факторов: напряженности магнитного поля, формы рассматриваемого поля (так как конечные размеры любого магнетика приводят к появлению встречного поля, уменьшающего первоначальное), температуры, частоты изменения магнитного поля, наличия дефектов структуры и т.д.
      Патент Великобритании 1 343 270: Способ измерения температуры, например, стальных пластин, окрашенных виниловыми красителями. Температура пластин определяется по изменениям их магнитной проницаемости и проводимости, которые воспринимаются индуктивным зондам, подключенным к генератору.
      А.с. 550 572: Способ структуроскопии ферромагнитных изделий, заключающийся в том, что контролируемое изделие подвергают взаимодействию с электроиндуктивным преобразователем магнитной проницаемости в электрические сигналы, по которым судят о результатах контроля, отличающийся тем, что с целью повышения достоверности определения усталостных изменений в структуре материала изделия, поверхность последнего сканируют преобразователем по заданной функции относительно места концентрации механических напряжений, регистрируют экстремумы относительного значения магнитной проницаемости и по их распределению судят об усталостных изменениях в структуре материала.
      А.с. 438 922: Способ неразрушающего контроля физико-химических процессов в структурированных упруго-вязкопластичных системах, основанный на изменении магнитной воспримчивости, отличающийся тем, что с целью повышения точности определения нормальной густоты водных растворов вяжущих веществ, изменяют во времени изменения удельной магнитной воспримчивости и по максимальному значению ее судят о готовности продукта.
      Существует ряд веществ, в которых квантовые эффекты межатомных взаимодействий приводят к появлению специфических магнитных свойств.
      8.1.3. Наиболее интересное свойство - ферромагнетизм. Оно характерно для группы веществ в твердом кристаллическом состоянии (ферромагнетиков), характеризующихся параллельной ориентацией магнитных моментов атомных носителей магнетизма.
      Параллельная ориентация магнитных моментов существует в довольно больших участках вещества - доменах. Суммарные магнитные моменты отдельных доменов имеют очень большую величину, однако сами доменты обычно ориентированы в веществе хаотично. При наложении магнитного поля происходит ориентация доменов, что приводит к возникновению суммарного магнитного момента у всего обьема ферромагнетика, и, как следствие, к его наманичиванию.
      А.с. 540 299: Постоянный магнит, содержащий одноименные частицы, отличающийся тем, что с целью повышения коэрицитивной силы, в качестве доменов использованы отрезки литого микропровода в стеклянной изоляции, каждый из которых содержит один микрокристал.
      Естественно, что ферромагнетики, как и парамагнетики, перемещаются в ту точку поля, где напряженность максимальная (втягиваются в магнитное поле). Из-за большой величины магнитной проницаемости сила, действующая на них, гораздо больше.
      А.с. 512 224: 1- Способ склеивания ферромагнитных материалов, включающий операцию нанесения клея на склеиваемые поверхности, соединение поверхностей, полного отвердения клея, отличающийся тем, что с целью уничтожения прочности склеивания, в период открытой выдержки раздельно проводят обработку каждой из двух склеиваемых поверхностей с нанесенным на них слоя клея постоянными магнитными полями противоположной полярности с напряженностью от 500 до 700 эротед.
      2- Способ по п.1, отличающийся тем, что в период отверждения на клеевой шов воздействуют магнитным полем, совпадающим по направлению с полем остаточного магнетизма.
      А.с. 185 003: Способ обработки внутренних поверхностей труб, включающий операции по введению внутрь трубы абразива ввиде мелкозернистого или порошкобразного вещества высокой твердости, перемещения этого абразива относительно внутренней поверхности трубы при их взаимном контакте и последующего извлечения из трубы полученного порошкообразного продукта, отличающийся тем, что с целью улучшения качества обработки трубы и для ее нагрева, феромагнитный абразив после его введения внутрь трубы подвергается воздействию вращающегося электромагнитного поля, созданного вокруг трубы.
      Здесь используется эффект втягивания ферромагнетика в то место поля, где магнитные силовые линии "гуще"; так как поле вращается, то вращаются и частицы.
      8.1.3.1. Существование доменов в ферромагнетиках возможны только ниже определенной температуры (ТОЧКА КЮРИ). Выше точки Кюри тепловое движение нарушает упорядоченную структуру доменов и ферромагнетик становится обычным парамагнетиком.
      Патент ФРГ 1 243 791: Термолюминисцентный дозиметр, содержащий дозиметрический элемент, заключенный в герметизированную прозрачную камеру и снабженный носителем люминисцентного материала, нагреваемый индукционным путем, отличающийся тем, что носитель содержит ферромагнитный материал, точка Кюри которого, характеризующие фазовый переход второго рода, соответствуют определенной максимальной температуре.
      Диапазон температур Кюри для ферромагнетиков очень широк: у радолиния температура Кюри 20 C, для читого железа - 1043 К. Практически всегда можно подобрать вещество с нужной температурой Кюри.
      А.с. 266 029: Магнитная муфта скольжения, содержащая корпус и многополюсный ротор с постоянными магнитами, отличающаяся тем, что с целью автоматического включения муфты при заданной температуре, она снабжена шунтами, установленными между полюсами ротора и выполненного из термореактивного материала, имеющего характеристику магнитной проницаемости с точкой Кюри, соответствующей заданной температуре, а корпус и ротор изготовлены из материала сточкой Кюри, соответствующей температуре выше заданной.
      При понижении температуры все парамагнетики, кроме тех у которых парамагнетизм обусловлен электронами проводимости, переходят либо в ферромагнитное, либо в антиферромагнитное состояние.
      8.1.4. У некоторых веществ (хром, марганец) собственные магнитные моменты электронов ориентированы антипараллельно (навстречу) друг другу. Такая ориентация охватывает соседние атомы и их магнитные моменты компенсируют друг друга. В результате антиферромагнетики обладают крайне малой магнитной воспримчивостью и ведут себя как очень слабые парамагнетики.
      8.1.4.1. Для антиферромагнетиков также существует температура, при которой антипараллельная ориентация спинов исчезает. Эта температура называется антиферромагнитной точкой Кюри или точкой Нееля.
      У некоторых ферромагнетиков (эрбин, диоброзин, сплавов марганца и меди) таких температур две (верхняя и нижняя точка Нееля), причем антиферромагнитные свойства наблюдаются только при промежуточных температурах. Выше верхней точки вещество ведет себя как парамагнетик, а при температурах меньших нижней точки Нееля, становится ферромагнетиком.
      8.1.5. Необратимое изменение намагниченности ферромагнитного образца, находящегося в слабом постоянном магнитном поле, при циклическом изменении температуры называется температурным магнитным гистерезисом. Наблюдается два вида гистерезиса, вызванных изменением доменой и кристаллической структуры. Во втором случае точка Кюри при нагреве лежит выше, чем при охлаждении.
      А.с. 467 314: Способ записи оптических изображений на ферромагнитную пленку, заключающийся в ее экспонировании, отличающийся тем, что с целью упрощения процесса записи путем исключения операции по намагничиванию пленки, экспонирование пленки осуществляют в интервале от температуры Кюри при нагреве до температуры Кюри при охлаждении.
      А.с. 515 169: Способ сборки ферритовых постоянных магнитов в систему с предварительным намагничиванием каждого магнита, отличающийся тем, что с целью исключения потери намагниченности при сборке, перед операцией намагничивания каждый постоянный магнит нагревают до температуры, при которой кривые возврата совпадают с кривой размагничивания.
      8.1.6. Ферримагнетизм - (или антиферромагнетизм нескомпенсированный) совокупность магнитных свойств веществ (ферромагнетиков) в твердом состоянии, обусловленных наличием внутри тела межэлектронного обменного взаимодействия, стремящегося создать антипараллельную ориентацию соседних атомных магнитных моментов. В отличии от антиферромагнетиков, соседние противоположно направленные магнитные моменты в силу каких-либо причин не полностью компенсируют друг друга. Поведение ферромагнетика во внешнем поле во многом аналогично ферромагнетику, но температурная зависимость свойств имеет иной вид: иногда существует точка компенсации суммарного магнитного момента при температуре ниже точки Нееля. По электрическим свойствам ферромагнетикид и э ле к т р и к и или полупроводники.
      8.1.7. Суперпарамагнетизм - квазипарамагнитное поведение систем состоящих совокупности экстремально малых ферро или феримагнитных частиц. Частицы этих веществ при определенно малых размерах переходят в однодоменное состояние с однородной самопроизвольной намагниченностью по всему обьему частицы. Совокупность таких веществ ведет себя по отношению к воздействию внешнего магнитного поля и температуры подобно парамагнитному газу (сплавы меди с кобальтом, тонкие порошки никеля и т.д.)
      Очень малые частицы антиферрмагнетиков также обладают особыми свойствами, похожими на суперпарамагнетизм, посколько в них происходит нарушение полной компенсации магнитных моментов. Аналогичными свойствами обладают и тонкие ферромагнитные пленки.
      Супермагнетизм применяется в тонких структурных исследованиях, в методах неразрушающего определения размеров, форм, количества и состава магнитной фазы и т.п.
      8.1.8. Пьезомагнетики - вещества, у которых при наложении упругих напряжений возникает спонтанный магнитный эффект, пропорциональный первой степени величины напряжений. Этот эффект весьма мал и легче всего его обнаружить в антиферромагнетиках.
      8.1.9. Магнитоэлектрики - вещества, у которых при помещении их в электрическое поле возникает магнитный момент, пропорциональный значению поля.
      8.2. Магнитокалорический эффект - изменение температуры магнетика при его намагничивании. Для парамагнетика увеличение поля приводит к увеличению температуры. что используется для получения сверхнизких температур методом адиабатического размагничивания парамагнитных солей.
      8.3. Изменение размеров тела, вызванное изменениями его намагниченности, называют - магнитострикцией (обьемной или линейной).Величина эффекта для обьемной магнитострикции -3.10 в минус пятой степени, а для линейной - 10 в минус четвертой степени.
      А.с. 517 927: Устройство для юстировки блока магнитных головок, содержащее рычаг с закрепленными на его конце указанными блоками и источник напряжения, под воздействием потенциалов которого осуществляется перемещение рычага, отличающееся тем, что с целью повышения точности юстировки в направлении, перпендикулярном поверхности рабочего слоя магнитного носителя, оно снабжено пружиной, скрепленной с другим концом рычага, фиксирующем его положение зажимом, и соленоидом, при этом рычаг выполнен в виде магнитострикционного стержня и помещен своей средней частью в полости соленоида.
      Этот эффект сильно зависит от соотношения в сплаве и от температуры.
      Необычное применение эффекта для нагрева:
      А.с. 550 771: Установка для индукционного нагрева текучих сред содержащая массивный сердечник с продольными каналами для прохождения среды и обхватывающее его коаксиально установленныеизоляционную трубку и индуктор, подключенный к источнику переменного тока, отличающаяся тем, что с целью интенсификации нагрева путем информации кристаллической решетки материала сердечника,а индуктор дополнительно подключен к источнику постоянного тока.
      8.3.1. Т е р м о с т р и к ц и я - магнитострикционная деформация ферро и антиферромагнитных тел при нагревании их в отсутствии магнитного тела. Эта деформация сопутствует изменению самопроизвольнойнамагниченности с нагревом. Она особенно велика в близи точек Кюри и Нееля, т.к. здесь особенно сильно изменяется намагниченность.
      Наложение термострикции на обычное тепловое расширение приводит к аномалии в ходе теплового расширения. В некоторых феромагнитах и антиферромагнитах эти аномалии очень велики.
      8.4. Магнитоэлектрический эффект - явление намагничивания ряда веществ в антиферромагнитном состоянии электрическим полем и их электрически поляризация магнитным полем. (Открытие N'123). Этот эффект обусловлен специфическойсимметрией расположения магнитных моментов в кристаллической решетке вещества.
      Этот эффект позволяет получать сведения о магнитной структуре веществ без сложных нейтронографических последствий и применяется в волноводных устройствах СВЧ.
      8.5. В основе гиромагнитных или магнитомеханических явлений лежит вращение электрона вокруг ядра. Суть этих явлений заключается в том, что намагничение магнетика приводят к его вращению (Эффект Энштейна и де Хаасе), и наоборот вращение магнетика вызывает его намагничивание.
      Патент США 3 322 364: Способ компенсации влияния гиромагнитного эффекта при угловом перемещении магнитометров результирующего поля, находящегося на самолете, и прибор для его осуществления обеспечивает компенсацию влияния гиромагнитного эффекта на магнитометр результирующего поля который имеет отсчитывающую обмотку. Гиромагнитный эффект возникает в результате углового перемещения относительно данного направления, совершаемого самолетом, на котором находится магнитометр. Вырабатывается электрический сигнал, величина котрого пропорциональна угловой скорости самолета относительно данного направления. В отсчеты магнитометра вводится пропорциональная этому сигналу коррекция, которая учитывает также угол между указанным выше направлением силовых линий измеряемого поля.
      8.6. Магнитоэустические эфекты - (магнитоупругие взаимодействия) в феритах-гранатах возникают в результате взаимодействия между спинами магнитных ионов и упругими колебаниями решетки, т.е. в результате тех же взаимодействий, что и магнитострикционные эффекты.
      А.с. 528 497: Волоконный звукопровод, состоящий из волокон звукопроводящего материала, собранных по концам в жгут, отличающийся тем, что с целью увеличения стабильности эксплуатационных характеристик волокна выполнены из ферромагнитного материала и намагничены на требуемом участке звукопровода по всему его сечению в одном направлении.
      А.с. 482 634: Способ измерения частоты механических колебаний обьекта основанный на совпадении составляющей вибрации с частотой собственных колебаний одного из несколько упругих элементов, жестко связанный с обьектом, отличающийся тем, что с целью повышения точности измерения, жесткость упругого элемента изменяют магнитным полем с симметричной магнитодвижущей силой напряженность которого изменяется пилообразным током, и по величине тока в момент резонанса определяют частоту механических колебаний обьекта.
      8.7. Ферромагнитный резонанс - электронный магнитный резонанс в ферромагнетиках - совокупность явлений, связанных с избирательным поглощением ферромагнитиками энергии электромагнитного поля при частотах совпадающих с собственными частотами процессии магнитных моментов электронной системы во внутреннем эффективном магнитном поле. (Поглощение на несколько порядков больше, чем в ВПР).
      А.с. 284 161: Способ измерения многновенного значения тока путем сравнивания с постоянным током, отличающийся тем, что с целью увеличения быстродействия и точности измерения, ферритовый элемент выводят из режима ферромагнитного резонанса помещая его в магнитное поле измеряемого постоянным током, возвращают его в режим феррорезонанса, изменяя постоянный ток, и по величине постоянного тока судят о мгновенном значении измеряемого параметра.
      8.8. Вблизи точек Кюри и Нееля у магнетиков наблюдается сильные аномалии в изменении различных свойств при изменении температуры. Для ферромагнитиков это - эффекты Гопкинса (возрастание магнитной восприимчивости вблизи точки Кюри и Баркгаузена) ступенчатый ход кривой намагниченности образца вблизи температуры Кюри при изменении температуры, упругих напряжений или внешнего магнитного поля.
      А.с. 425 142: Способ измерения максимальной дифференциальной магнитной проницаемости в ферромагнитных материалах, основанный на подсчете числа скачков Баркгаузена на восходящей ветви петли гистеризиса, отличающийся тем, что с целью повышения точности и упрощения процесса измерения, уменьшают напряженность магнитного поля до величины, при которой чило скачков Баркгаузена на нисходящей ветви петли гистеризиса станет равным половине общего числа скачков, при этом значении уменьшают напряженность магнитного поля на заданную величину и измеряют приращение индукции, по величине которой определяют максимальную дифференциальную магнитную проницаемость.
      Кроме того, вблизи точки Кюри наблюдается ферромагнитная аномалия теплоемкости. Это дает возможность определять температуру Кюри и отсутствии магнитного поля.
      Близкие эффекты наблюдаются и в антиферомагнитиках.
      Л И Т Е Р А Т У Р А
      Г.С.Кринчик, Физика магнитных явлений. М., изд-во МГУ 1976. К 8.1. "Наука и жизнь", N'4 стр.44
      Физический энцеклопедический словарь, т.5, стр.83, 305-309.
      А.с.515021, 239633, 449292, 426183, 504103,466574,
      Патент США 3797224. К 8.3. А.с.541530, 541561.
      9.КОНТАКТНЫЕ,ТЕРМОЭЛЕКТРИЧЕСКИЕ И ЭМИССИОННЫЕ ЯВЛЕНИЯ.
      9.1.При контакте двух разных металлов один из них заряжается положительно, другой - отрицательно и между ними возникает разность потенциалов, называемая к о н т а к т н о й. Она не очень мала - от десятых долей вольта до нескольких вольт и зависит только от химического состава и температуры контактирующих тел "(Закон Вольта)"
      А.С.N 508550: Способ контроля качества спекания агломерационной шихты путем изменения электрических характеристик спекаемого материала,отличающийся тем,что с целью повышения быстродействия непрерывности контроля качества ,исключения влияния влажности исходной шихты, измеряют абсолютное значение электрического напряжения (ЭДС) между корпусом спекаемого агрегата и спеченным материалом и сравнивают эту величину с абсолютной величиной электрического напряжения (ЭДС),полученной при спекании материала с эталонными характеристиками.
      А.С.N 255620 Способ определения усталостной прочности металла заключающийся в том,что образец из иследуемого металла нагружает его до разрушения и по числу циклов нагружения до разрушения судят об усталостной прочности металла,отличающ с целью определения накопления усталостных повреждений в металле также в процессе его нагружения ;измеряют величину работы выхода электрона с его поверхности например, методом контактной разности потенциалов, по которой судят о накоплении усталостных повреждений в металле.
      Контактная разность потенциалов возникает не только между двумя металлами, но и между двумя полупроводниками полупроводником и металлом,двумя диэлектриками и т.д., причем соприкасающие тела могут не только твердыми , но и жидкими.
      9.1.1 В основе т р и б о э л е к т р и ч е с т в а
      (электризации тел при трении) также лежат контактные явления.Причем знаки зарядов , возникающих при трении двух тел , определяются их составом,плотностью,диэлектрической проницаемостью,состоянием поверхности и т.д. Трибоэлектричество возникает при просеивании порошков, разбрызгивании жидкостей,трении газов о поверхности тел и в других подобных случаях.
      А.С.N 224151 Способ испытания органических жидкостей на электролизацию например нефтепродуктов, путем создания в них трением электростатического потенциала,отличающийся тем,что с целью одновременного определения скорости образования и скорости утечки возникающих зарядов,образование зарядов происходит путем вращения твердого тела,помещенного в иследуемую жидкость.
      Другой интересный пример - электростатический коатулятор. Он педназначен для очистки воздуха в штреках. Вентилятор гонит по трубе запыленный воздух . Труба разделяется на два рукова один из фторопласта, другой- из оргстекла. Пылинки антрацита трущиеся о стенки , заряжаются поразному: на фторопласте положительно,на оргстекле отрицательно.Потом рукова сходятся в общую камеру,где размноженные частицы антрацита притягива, сливаются и па.
      9.1.2. При контакте металла с проводником наблюдается
      в е н т и л ь н ы й эффект. Контктный слой на границе металла и полупроводника обладает односторонней проводимостью, что используется,например, для выпрямления переменного тока в точечных диодах. При кополу проводников разных типов проводимости образуется р-п п е р е х о д, также обладающий вентильными свойствами. Это явление используется во многих типах полупроводниковых приборов.
      9.2. В металлах полупроводниках процессы переноса зарядов (электрический ток) и энергии взаимосвязаны,так как осуществляются посредством перемещения подвижных носителей тока электронов проводимости и дырок. Эта взаимосвязь обуславливает ряд явлений (Зеебека,Пельтье, и Томсона),которые называют т е р м о э л е к т р и ч е с к и м и явлениями.
      9.2.1. Эффект Зеебека состоит в том,что в замкнутой электрической цепи из разнородных металлов возникает т е р м о э.д.с. если места контактов поддерживаются при разных температурах. Эта ЭДС зависит только от температуры и от природы материалов, составляющих термоэлемент. Термо э.д.с. для пар металлов может достигать 50 мкВ/градус; в случае полупроводниковых материалов величина термо э д с выше (10 во 2-ой + 10 в 3-ей мкВ/градус).
      А.С. N 263969: Электротермический способ дефектоскопии заключающийся в том,что контролируемую зону нагревают пропуская через нее в течение определенного времени постоянный по величине электрический ток,измеряютпри помощи термопары-датчика температуры ее нагрева и судят о наличии дефекта по отклонению этой температуры от температуры нагрева бездефектной зоны сварного соединения, отличающийся тем , что с целью контроля зоны сварного соединения двух разных металлов, например, контактных узлов радиодеталей, в качестве термопары-датчика используют термопару, образованную соединенными металлами.
      Для проверки качества сварного шва снимают распределение термоэлектрического потенциала поперек шва . Пики и впадинылс ш0,0щ на кривых распределения говорят о неоднородности шва, а их величина - о степени неоднородности. Быстро и наглядно.
      Если в разрыв одной из ветвей термоэлемента включить последовательно любое число проводников любого состава,все спаи (контакты) которых поддерживаются при одной и тойже температуре, то термо э.д.с. в такой системе будет равна термоэдс исходного элемента.
      А.С. N 531042: Термопара, содержащая защитный чехол,термоэлектроды с электрической изоляцией, рабочие концы которых снабжены снабжены токопроводящей перемычкой ,образующей измерительный спай,отличающийсятем,что с целью увеличения срока службы термопары в условиях повышенной вибрации и больших скоростей нагрева, измерительный спай термопары выполнен в виде слоя порошкообразного металла ,расположенного на дне защитного чехла.
      При измерении физического состояния веществ , участвующих в контакте изменяется и величина термо э.д.с.
      А.С.N 423024:Способ распознавания систем с ограниченной и неограниченной взаимной растворимостью компонентов по температурной зависимости термо э.д.с.,отличающейся тем,что с целью повышения надежности распознавания измеряют термо э.д.с. контакта двух исследуемых образцов
      Между металлом , сжатым всесторонем давлением, и темже металлом, находящемся при нрмальном давлении тоже возникает термо э.д.с.
      Например , для железа при температуре 100 градусов С и давлении 12 кбар,термоэдс равна 12,8 мкВ .При насыщении металла или сплава в магнитном поле относитель тогоже вещества без магнитного поля возникает термоэдс порядка 09мкВ/градус
      9.2.2 Эффект П е л ь т ь е обратен эффекту Зеебека.
      При прохожд тока через спай различных металлов кроме джоудева тепла доплнительно выделяется или поглощается, в зависимости от направления тока,некоторое колличество тепловых (спай сурьма-висьмут при 20градусах С -10,7мкал/Кулон).При этом колличество теплоты пропорционально первой степени тока.
      Патент США N 3757151: Для увеличения отношение сигнал шум ФЭУ предлогается способ охлаждения фотокатодов термоэлектрическими элементами,расположенными внутри вакуумной оболочки ФЭУ.
      Заявка ФРГ N 1297902: Холодильник устройства для отбора газа, в котором отвод конденсата составляет одно целое с холодильником. На внутренней стороне полого конуса закреплены холодные спаи элементов Пельтье и от него ответвляется трубопровод для отбора измерительнонго газа. Холодильник,отличается тем,что в качестве генератора тока,потребляемыми элементами Пельтье,предусмотрена батарея термоэлементов,горячие спаи которых находятся в канале дымовых газов,а холодные спаи - во внешнем пространстве.
      9.2.3. Явлением Томсона называют выделение или поглощение теплоты,избыточнойнад джоулевой,при прохождении тока по неравномерно нагретому однородному проводнику или полупроводнику.
      9.3. При контакте тел с вакуумом или газами наблюдается электронная эмиссия - выпускание электронов телами под влиянием внешних воздействий: нагревания (теплоэлектронная эмиссия) потока фотонов (фотоэмиссия),потока электронов (вторичная эмиссия),потока ионов,сильного электрического поля (автоэлектронная или холодная эмиссия),механических или других "портящих структуру" воздействий (акзоэлектронная эмиссия)
      Во всех видах эмиссий , кроме автоэлектронной, роль внешних воздействий сводится к увеличению энергетии части электронов или отдельных электронов тела до значения,позволяющего им преодолеть потенциальный порог на границе тела с последующим выходом и вакуум или другую среду.
      А.С.N 226040:Способ контроля глубины нарушенного поверхностного слоя полупроводниковых пластин, отличающихся тем,что с целью обеспечения возможности автоматизации и упрощения поцесса контроля,пластину нагревают до температуры ,соответствующей максимуму э к з о э л е к т р о н н о й э м и с с и , которую контролируют одним из известных способов , а по положению пика эмиссии определяют глубину нарушенного слоя.
      А.С.N 513460: Э л е к т р о н н а я т у р б и н а,
      содержащая помещенные в вкуумный баллон катод и анод и размещенный между ними ротор с лопастями, отличающийся тем, что с целью увеличения крутящегося моментана валу турбины ее ротор вполнен ввиде набора соосных цилиндров с лпастями, между цилиндрами роторов установлены неподвижные направляющие лопатки имеют покрытие, обеспечивающее вторичную электронную эмиссию, например, сурьмяно-цезиевое.
      9.3.1. В случае автоэлектронной эмиссии внешнее электрическое поле превращают потенциалный порог на границе тела в барьер конечной ширины и уменьшает его высоту относительно высоты первоначального порога,вследствии чего становиться возможным квантовомеханическое тунелирование электронов сквозь барьер. При этом эмиссия происходит без затраты энергии электрическим полем.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16