Современная электронная библиотека ModernLib.Net

Внеклассная работа - Математические олимпиады по лигам. 5-9 классы

ModernLib.Net / Павлов Андрей / Математические олимпиады по лигам. 5-9 классы - Чтение (Ознакомительный отрывок) (Весь текст)
Автор: Павлов Андрей
Жанр:
Серия: Внеклассная работа

 

 


Андрей Николаевич Павлов
Математические олимпиады по лигам. 5–9 классы

Предисловие

      Когда мы слышим слово «олимпиада», то ассоциируем его с сильными учащимися, отличниками. Подобный подход оправдан, если речь идет о городских, районных, областных, республиканских, Всероссийских и Международных математических олимпиадах. На таких уровнях сама цель олимпиад – выявление одаренных и нестандартно мыслящих учащихся, определение сильнейших из них. Однако задачи внутришкольных олимпиад нам видятся гораздо шире.
      В книге представлен опыт автора по проведению олимпиад в лицее г. Лобни Московской области. Их отличительная особенность: в олимпиадах участвуют все! Причем термин «все» следует понимать в буквальном смысле слова, а именно как 100 %-ный охват учащихся, без исключений. С этим связаны и дифференцирование заданий по уровню сложности, и включение в олимпиады, помимо нестандартных, чисто технических заданий (примеры, уравнения, типовые задачи и т. д.).
      Рассмотрим основное содержание и правила проведения наиболее популярных олимпиад, которые и вошли в книгу.

Олимпиады по лигам (5–6 классы)

      Новая и чрезвычайно интересная форма внеклассной работы по предмету. Учителя, знающие, как устроены лиги в чемпионатах страны по различным видам спорта, без труда разберутся в этой системе.
      Принцип проведения игры прост. Сначала дается общее задание для всех, по результатам которого определяется, кто в какой лиге (второй, первой, высшей или суперлиге) начинает играть.
      Далее выбирается день недели, в который постоянно будут проходить соревнования. Выбор дня определяется действующим расписанием. Желательно, чтобы все классы параллели имели одинаковое количество уроков в этот день (напоминаем, что в олимпиаде участвуют все).
      Для лучшего понимания рассмотрим правила игры на конкретном примере.
      Пусть в параллели пятых классов 53 человека. После предварительного тура 10 человек определены в суперлигу, 15 – в высшую, 15 – в первую и 13 – во вторую. Определен постоянный день игр – четверг.
      В первый такой четверг соревнуются участники второй лиги (вторая лига, 1 тур). Они решают шесть заданий за 40–60 мин (время определяется учителем). После проведения первого тура и проверки работ участники, занявшие первые пять мест, переходят в первую лигу. Остальные 8 человек получают места с 53 по 46.
      В следующий четверг соревнуются 20 человек (15 человек, определенных первоначально в первую лигу плюс пятеро перешедших из второй лиги). После проверки работ происходит следующее: лучшие 5 участников переходят в высшую лигу; остальные 15 человек получают места с 45 по 31; 5 участников, занявших последние места (в нашем примере 41–45 места), переходят во вторую лигу.
      В следующий (третий) четверг соревнуются 20 человек (15 человек, определенных изначально в высшую лигу плюс пятеро перешедших из первой лиги). После проверки работ, как и в предыдущем случае: 5 лучших участников переходят в суперлигу; остальные 15 человек получают места с 30 по 16; 5 участников, занявших 26–30 места, переходят в первую лигу.
      В четвертый четверг проходит первый тур суперлиги. Все участники в итоге получают места с 1 по 15, причем участники, занявшие 11–15 места, переходят в высшую лигу.
      Затем по тем же правилам проходит второй тур в каждой из четырех лиг, затем третий и т. д.
      Если учащийся по болезни или по другим причинам пропускает какой-нибудь тур своей лиги, то он набирает 0 баллов и выбывает в более низшую лигу (а если он во второй лиге – просто занимает последнее место).
      В книге представлено два комплекса олимпиад по лигам:
      1. Олимпиады по лигам (5–6 классы), адаптированные под учебник Г. В. Дорофеева и Л. Г. Петерсон. Учителя математики знают, что если пятиклассники учатся по учебному комплекту Г. В. Дорофеева и Л. Г. Петерсон, то за 5 класс проходится чуть ли не вся программа 6 класса. Это нашло свое отражение в содержании задач.
      Всего в лигах предусмотрено 10 туров. Итоговые результаты подводятся просто (лучше всего это сделать в Excel). Пусть некоторый учащийся в течение десяти туров занимал места: ах, а2, ах... а. Из данных чисел отбрасываются лучший и худший результаты, а далее считается среднее арифметическое оставшихся 8 чисел:
      У кого меньше число Ь, тот и выиграл (для сортировки участников по местам можно применить известную в Excel команду РАНГ). Небольшое пояснение: лучший результат отбрасывается, так как бывает случайное попадание учащегося в высшую лигу и суперлигу перед первым туром, а худший результат учащийся также может показать случайно, например, вследствие пропуска по болезни.
      Итоговая таблица может выглядеть так:
      2. Олимпиады по лигам (5–6 классы), адаптированные под учебник Н. Я. Виленкина и др.
      Эти олимпиады четко разделены на два вида:
      стандартная лига (примеры, уравнения, типовые задачи и т. д.);
      олимпиадная лига (нестандартные задания).
      Разделение связано с тем, что в учебном комплекте Н. Я. Виленкина и др. практически отсутствуют задачи на развитие логического мышления (правда, это не является недостатком учебника, просто он преследует другие дидактические цели). А потому есть смысл разделить математическое соревнование учащихся на две части.
      Итоги подводятся так же, как и при проведении олимпиад, адаптированных под учебник Г. В. Дорофеева и Л. Г. Петерсон. Те же 10 туров, та же формула для подведения итогов.
      Практика показала, что детям очень нравится такое соревнование. Неожиданным и одновременно приятным было то обстоятельство, что учащиеся, занимающие последние места, рвались на игру не хуже «обитателей суперлиги» и также живо обсуждали каждый промежуточный итог игры.
      Выражаю большую благодарность своим коллегам: Наталье Михайловне Дорофеевой и Ольге Алексеевне Коржовой, которые вместе с автором книги разработали данную форму проведения математических олимпиад.

Финальная игра (5–6 классы)

      Игра названа финальной, так как ее рекомендуется проводить в качестве итоговой к олимпиадам по лигам. В ней соревнуются между собой учащиеся, занявшие одинаковые места в своих классах. Так, из вышеприведенной таблицы следует, что первое место в 5а классе заняла Вертепова Татьяна, в 5б – Углов Денис, в 5в – Заводов Алексей. Значит, в финальной игре они и соревнуются между собой. В нашем случае получаем следующую таблицу участников:
      В книге приведено 17 вариантов финальной игры. Если в классе более 17 человек, что характерно для общеобразовательных школ, то задания для последующих вариантов можно взять из учебника или дидактических материалов.
      Финальную игру можно провести независимо от олимпиад по лигам; в этом случае за основу берутся учебные показатели учащихся.

Межклассные математические олимпиады

      Соревнуются учащиеся 5–9 классов. Привлекать 10–11 классы вряд ли целесообразно ввиду их профилизации.
      В книге вы найдете задания трех межклассных олимпиад.
      На межклассную математическую олимпиаду № 1 от каждого класса представляются две команды. Общая численность двух команд – не более 12 человек.
      За каждое задание можно получить: 0 очков (—), 1 очко ( + ), 2 очка ( + ), 3 очка ( + ).
      Очки, набранные командой № 1, умножаются на 1, 5.
      В олимпиаду входят:
      кроссворд;
      технические задания (примеры, уравнения, неравенства и т. д.);
      задачи на сообразительность;
      геометрические задания;
      задачи по комбинаторике.
      Класс может выставить на олимпиаду более двух команд (скажем, одну первую и две вторых). В этом случае будет засчитан лучший из результатов. Например, если команда № 1 набрала 11 очков, команда № 2а – 12 очков, команда № 26–14 очков, то класс в целом получает 11 1, 5 + 14 = 30, 5 очков. Время выполнения работы – 60 мин.
      На олимпиаду № 2 от каждого класса должны быть представлены три команды: № 1 – самая сильная, № 2 и № 3. В каждой команде должно быть не более 6 человек. Класс может представить более трех команд, например, две команды под № 3. В этом случае будет засчитан лучший из результатов.
      Каждой команде выдается листок с заданиями. Около каждого задания стоит количество очков, которое может получить команда в случае верного решения и верного ответа. На решение заданий также отводится 60 мин.
      А на олимпиаду № 3 каждый класс представляет 4 команды. В команде не более 6 человек.
      Команда № 1 решает 4 олимпиадных задачи, по 5 очков каждая. Команда № 2 решает 5 технически сложных заданий (примеры, уравнения, неравенства, системы, типовые задачи), по 4 очка каждое. Командам № 3 и № 4 предлагается соответственно 6 заданий по 3 очка и 7 заданий по 2 очка, причем задания для команды № 4 взяты из дидактических материалов для общеобразовательных классов. Время выполнения работы – 45–60 мин.
      Решения всех задач олимпиад должны быть четкими и подробными. В случае если несколько команд набирают одинаковое количество очков, то оцениваются оформление, рациональность и красота решения.
      Важно отметить, что в соревновании принимают участие и слабые учащиеся, причем каждый из них понимает: успех класса от него зависит не меньше, чем от отличников!
      Ответы на все задания помещены в конце книги, поэтому в содержании к каждой рубрике приводятся две страницы. Первая указывает место расположения задания, вторая – в скобках – ответ.

Олимпиады по лигам (5–6 классы), адаптированные под учебник Г. В. Дорофеева и Л. Г. Петерсон

Вторая лига

1 тур

      1. Вычислите 4506 ? 7568.
      2. Периметр квадрата равен 12 м. Найдите площадь квадрата.
      3. Найдите значение выражения a: b – с при а = 34 128 120, b= 1703, с = 400.
      4. Решите уравнение 148 – 7 ? х = 36.
      5. Аня прошла 2 км за 31 мин, а Оля – 4 км за 1 ч. Скорость какой девочки больше и почему?
      6. Четыре страны имеют форму треугольников. Нарисуйте, как расположены страны одна относительно другой, если у каждой из них есть общие границы с тремя другими.

2 тур

      1. Во сколько раз число 9801 больше, чем 99?
      2. Частное равно 7, делимое на 14 больше частного. Найдите делитель.
      3. Сколько миллиметров в 4 км?
      4. Решите уравнение 4752: (1010 – 2х) = 11.
      5. Поставьте между цифрами любые арифметические знаки и скобки, чтобы получить верное равенство: 7 7 7 7 = 8.
      6. В семье четверо детей. Им 5, 8, 13 и 15 лет, а зовут их Аня, Юра, Света и Лена. Сколько лет каждому из них, если одна девочка ходит в детский сад, Аня старше, чем Юра, а сумма лет Ани и Светы делится на три?

3 тур

      1. На сколько произведение чисел 308 и 22 больше их частного?
      2. Найдите сумму цифр числах = 1 ? 2 ? 3 ? 4 ? 5 ? 6 ? 7.
      3. Сколько метров в 1 см?
      4. Подберите такое натуральное число х, чтобы выполнялось равенство 12 – х = х ? х.
      5. Встретились три друга – Белов, Серов и Чернов. Чернов сказал другу, одетому в серый костюм: «Интересно, что на одном из нас белый костюм, на другом – серый и на третьем – черный, но на каждом костюм цвета, не соответствующего фамилии». Какой цвет костюма у каждого из друзей?
      6. Угадайте два следующих числа в ряду: 5, 8, 14, 26, 50...

4 тур

      1. Вычислите 75 764 376: 94–86 004.
      2. Решите уравнение 737 – 14 (38 – х) = 205.
      3. Запишите двойку тремя пятерками.
      4. Кот в сапогах поймал четырех щук и еще половину улова. Сколько щук поймал Кот в сапогах?
      5. Как в зале расставить 10 кресел так, чтобы у каждой из четырех стен кресел было поровну? При этом: 1) кресла должны стоять только вдоль стен; 2) если кресло стоит в углу зала, то считается, что оно стоит вдоль сразу двух стен.
Конец бесплатного ознакомительного фрагмента.