Современная электронная библиотека ModernLib.Net

Битва за звезды-2. Космическое противостояние (часть II)

ModernLib.Net / История / Первушин Антон / Битва за звезды-2. Космическое противостояние (часть II) - Чтение (стр. 3)
Автор: Первушин Антон
Жанр: История

 

 


 
 

Глава 16 НАСЛЕДНИКИ «ШАТТЛА»

      Понятно, что и по ту сторону границы конструкторская мысль не стоит на месте. Периодически появляются проекты и программы, призванные так или иначе заменить в отдаленной перспективе систему «Спейс Шаттл». О некоторых из этих проектов я и расскажу в этой главе.

Программа «RLV» («Venture Star»)

      Программа «РЛВ» («RLV» — сокращение от английского «Reusable Launch Vehicle», «Космический корабль многоразового использования») осуществляется в тесной кооперации НАСА с аэро-космической промышленностью США. С помощью технологии «Одной ступенью на орбиту» («Single-Stage-To-Orbit») намечается существенно снизить стоимость вывода полезной нагрузки на орбиту (до 2000 долларов за килограмм) и тем самым увеличить конкурентоспособность космических носителей на мировом рынке ракетно-космических услуг.
      Программа была поддержана на самом высоком уровне — в 1996 году ее представил публике сам вице-президент США Эл Гор во время торжественной церемонии в Лаборатории реактивного движения, а администратор НАСА Дэн Голдин тогда же продемонстрировал модель перспективного летательного аппарата.
      Итогом программы должно было стать создание к 2004 году корабля многоразового использования «Вентура Стар» («Venture Star») конструкции фирмы «Локхид-Мартин». Согласно проекту он способен выводить на околоземную орбиту полезный груз массой 22,5 тонны.
      Габариты космического корабля «Вентура Стар»: длина — 54 метра, размах крыла — 60 метров, высота — 16,8 метра.
 
      Стоимость разработки «Вентура Стар» оценивается в 5 миллиардов долларов.
      Одной из основных особенностей проекта является использование линейного ЖРД с внешним расширением.
      В то время как сопло обычного ЖРД оптимизировано для определенного режима работы и не может одинаково эффективно работать в широком диапазоне высот и давлений — от старта до выхода на орбиту, линейный двигатель использует атмосферу как часть сопла и поток воздуха сам оптимизирует факел. Линейный ЖРД позволяет осуществлять управление вектором тяги в одной плоскости без отклонения его оси путем создания разности тяги верхней и нижней половин, что позволяет отказаться от его подвижной подвески. К тому же линейный ЖРД на 75 % меньше обычного с диалогичной тягой, что еще более снижает массу двигателя, корабля и топлива, уменьшая стоимость вывода полезной нагрузки.
      Эта схема разрабатывается фирмой «Рокетдайн» с середины 60-х годов. «Рокетдайн» предложила такой ЖРД для использования на космическом корабле «Спейс Шаттл», но двигатель был отвергнут, так как технологию признали слишком «незрелой». С тех пор специалисты фирмы выполнили 73 лабораторных и наземных испытательных запуска, во время которых двигатель проработал более чем 4000 секунд.
      «Рокетдайн» потратила 500 миллионов долларов для улучшения технологии ЖРД.

Атмосферный аналог «Х-33»

      Летательный аппарат создавался в рамках программы «РЛВ» как атмосферный аналог космического корабля «Вентура Стар» и демонстратор заложенных в него технических концепций.
      Конструктивно «Х-33» является уменьшенной вдвое моделью «Вентура Стар». Он в девять раз легче, а стоимость разработки в четыре раза меньше.
      Габариты «Х-33»: длина — 25,3 метра, размах крыла — 28 метров, высота — 8,2 метра.
      Фирма «Локхид-Мартин» получила от НАСА контракт на постройку «Х-33» в июле 1996 года. НАСА планировало потратить на этот проект 941 миллионов долларов, фирма «Локхид-Мартин» собиралась инвестировать в него еще как минимум 220 миллионов.
      «Х-33» не планировалось выводить на орбиту. Он должен был провести серию полетов в атмосфере над западной территорией США для проверки работы всех систем. Было намечено 15 испытательных полетов. Стартуя вертикально с авиабазы Эдварде в Калифорнии, «Х-33» должен достигать скорости 15 Махов на высотах до 100 километров.
      Строительство Центра испытательных полетов «Х-33» началось в ноябре 1997 года и было завершено в соответствии с предварительными планами через 12 месяцев, без перерасхода средств — на строительство было выделено 32 миллиона долларов.
 
 
 
      В 1997 году началась серия испытаний линейного ЖРД в полете со скоростью от 0,8 до 3 Махов на высотах от 6 до 24 километров. На летающей лаборатории НАСА «SR-71 #844» был установлен контейнер «Linear Aerospike SR-71 Experiment» длиной 12,3 метра, который представляет собой модель «Х-33» в масштабе 1:10 с восемью секциями двигателя и измерительным оборудованием общим весом 5,8 тонны. Имеющегося топлива хватает для 2–3 секунд работы двигателя с тягой до 2800 килограммов.
      Первый полет космического корабля «Х-33» запланировали на март 1999 года. Потом старт был отодвинут на июль, декабрь, а затем — на середину 2000 года. Первая отсрочка была вызвана недостаточной надежностью крепления друг с другом деталей V-образного сопла линейного ЖРД XRS-2200, которые должны выдерживать высокую температуру.
      Последний раз полет был отложен из-за проблем со сборкой топливного водородного бака. В декабре 1998 года во время испытаний при высокой температуре внутренняя стенка одного из двух баков для жидкого водорода потеряла герметичность.

Ракетный самолет Х-34

      Ракетный самолет Х-34 создавался в рамках программы «РЛВ» для проверки выполнимости запуска небольших коммерческих и научных полезных грузов на борту «Вентура Стар».
      В июне 1996 года компания «Орбитал Саенсес Корпорейшен» («Orbital Sciences Corporation») получила контракт на 60 миллионов долларов на проектирование, создание и испытания Х-34.
      Х-34 должен был летать при любых погодных условиях, приземляться в автономном режиме и иметь необходимые средства аварийной эвакуации экипажа. Запуск его предполагалось осуществлять с помощью самолетов L-1011, а после набора необходимой высоты должен был включаться собственный ракетный двигатель Х-34, разгоняющий аппарат до скорости 8 Махов и высоты в 75 километров.
      Габариты Х-34: длина — 17,78 метра, размах крыла — 8,45 метра, высота — 3,5 метра.
      Согласно предварительному контракту предусматривалось только два испытательных полета но уже тогда было понятно, что, возможно, потребуются и дополнительные испытания.
      В конце 1998 года НАСА и «ОСК» договорились о проведении 25 дополнительных испытательных полетов Х-34.
      В марте 1999 года закончились полномасштабные испытания двигателя для Х-34 на стенде Космического центра имени Стенниса в Миссисипи. Двигатель «Fastrac», разработанный в космическом центре НАСА имени Маршалла проработал в течение 20 секунд. Тяга составила 267 тонн. Двигатель, использующий керосин и жидкий кислород, оказался очень экономичен. Перед установкой на Х-34 планировалось провести до 85 испытаний двигателя «Fastrac».
      Однако 1 марта 2001 года НАСА объявило о прекращении финансирования работ в рамках программ Х-33 и Х-34.
      Еще за год до этого многим стало ясно, что НАСА не справляется с проектом, переоценив возможности современных технологий. Так, газета «Вашингтон Пост» сообщала своим читателям, что программа Х-33 увязла в проблемах и «слишком амбициозна». Невысокие характеристики линейного ЖРД, неустойчивость клинообразного летательного аппарата при разных скоростях полета, а также «перебор» по массе конструкции буквально замучили проектантов.
      Сильнейшая оппозиция программе со стороны других подрядчиков, ведущих альтернативные разработки, в конце концов вынудила НАСА принять решение: программа «РЛВ» была закрыта в пользу конкурентных проектов.

Космоплан Х-37

      В 1999 году между авиакомпанией «Боинг» и НАСА было подписано соглашение о строительстве и тестировании небольшого космоплана Х-37, предназначенного для испытания технологий, которые предполагается использовать в космических кораблях многоразового использования нового поколения.
      Воздушно-космический корабль Х-37, ранее известный под названием «Future-X Pathfinder», проведет серию испытательных полетов в атмосфере и в космосе для проверки более сорока технических новинок в конструкции корпуса аппарата, в реактивном двигателе, системе теплозащиты двигателя, составе топлива и других системах. Предполагается, что новый корабль будет более безопасным и надежным, чем «Спейс Шаттл». При этом планируется снизить стоимость вывода в космос одного килограмма полезной нагрузки с 25 тысяч долларов до 2,5 тысячи.
      Х-37 представляет собой небольшой космоплан длиной 8,3 метра, с размахом крыла 4,5 метра.
      На этапе воздушных испытаний космоплан будет подниматься в воздух на самолете К-52. На этапе орбитальных полетов его выведет в космос «Спейс Шаттл» или баллистическая ракета. Предполагается, что космоплан проведет на орбите около трех недель.
      В мае 2000 года с завода корпорации «Боинг» на полигон Летно-исследовательского центра НАСА имени Драйдена был доставлен масштабный макет экспериментального космоплана Х-37.
 
      Размеры макета, который получил название Х-40А, составляют 85 % от размеров Х-37. Макету предстоит серия наземных и воздушных испытаний, в том числе десантирование с вертолета для проверки систем навигации и управления, которые будут использоваться в Х-37.

Космоплан Х-38

      Космоплан Х-38, известный также под обозначением Х-35 и X–CRV, представляет собой прототип спасательной «шлюпки» для экипажа Международной космической станции (МКС). Он может быть использован и в качестве транспортного корабля, выводимого в космос ракетойносителем «Ариан-5» («Ariane 5»).
      Разработка космической спасательной «шлюпки» началась еще в 70-х годах. Современный ее вариант основывается на конструкции челнока Х-24А (его мы обсуждали в главе 8). Главной «изюминкой» нового проекта является использование параплана в качестве тормозящего и посадочного средства. Параплан позволяет осуществить управление посадкой с возможностью бокового маневра на дальность до 1300 километров.
      Первые испытания параплана состоялись в 1996 году, а первые полеты Х-38 на подвеске самолета В-52 начались в феврале 1997 года.
 
      Спасательный космоплан Х-38 не имеет собственных двигателей и представляет собой летательный аппарат с несущим корпусом. Возвращение на Землю будет проходить по той же схеме, как и возвращение «Спейс Шаттла». И только на завершающем этапе будет выпускаться параплан. На Х-38 не будет ручного управления — процедура входа в атмосферу и спуск предполагается полностью автоматизировать.
      Габариты Х-38: длина — 8,7 метра, максимальный диаметр — 4,4 метра, полная масса — 8163 килограмма. Количество спасаемых астронавтов — 6 человек. Система жизнеобеспечения рассчитана на четыре дня. Продолжительность эксплуатации в качестве модуля МКС — 4000 дней.
      Испытания демонстрационной модели космоплана Х-38 проводились в Летно-исследовательском центре НАСА имени Драйдена, расположенном на территории базы ВВС Эдвардс (штат Калифорния).
      В марте 1998 года первую модель постигла неудача: во время самостоятельного полета парашют-крыло был поврежден и Х-38 разбился. После этого было принято решение об укреплении его конструкции. Уже в феврале 1999 года вторая модель, получившая условное обозначение V-132, была готова к испытаниям. От предшественницы новая модель отличается еще и тем, что на ней установлена активная система управления полетом, которая позволит Х-38 выполнять маневры во время спуска.
      Первый самостоятельный полет второй модели состоялся 6 февраля 1999 года. Х-38 отделился от самолета-носителя В-52 на высоте 6700 метров. Несколько минут он находился в свободном полете, после чего над ним раскрылся параплан, и через 12 минут Х-38 приземлился.
      Борьба за контракт на производство Х-38 развернется, видимо, между компаниями «Боинг» и «Локхид-Мартин».
      Полностью проверенный и готовый к использованию спасательный аппарат предполагается разместить на МКС в 2003 или 2004 году. Он будет пристыковыван к ее внешней поверхности и использован только для экстренной эвакуации экипажа, когда не будет времени дожидаться прилета «Спейс Шаттла». Пока же роль «спасательной шлюпки» на Международной космической станции исполняет российский космический корабль «Союз».
 
 

Французская космонавтика

      Тема аэро-космических систем многоразового использования интересует не только НАСА и министерство обороны США — конструкторы других стран мира предлагают не менее интересные проекты перспективных космических кораблей, которые могли бы заменить «Спейс Шаттл».
      Среди ранних разработок в этой области можно отметить, например, проект французской фирмы «Шекма» («SHECMA»). В конце 60-х годов эта фирма разрабатывала двухступенчатый транспортный космический корабль по схеме «воздушный старт».
      Тяжелый самолет-носитель (первая ступень) имел силовую установку, включающую четыре ТРД и четыре турбопрямоточных реактивных двигателя на керосине. Было предусмотрено дополнительное впрыскивание криогенных компонентов.
      Силовая установка орбитального самолета (вторая ступень) состояла из шесть двигателей, работающих на жидких кислороде и водороде. Четыре силовых двигателя имели тягу по 35 тонн, два двигателя управления — по 700 килограммов.
      Планировалось, что разделение ступеней будет происходить при скорости полета 7 Махов на высоте 35 километров.
      После этого самолет-носитель возвращается к месту старта, а орбитальная ступень по траектории, близкой к баллистической, выводится на рабочую орбиту.
      В 1976 году Французский Национальный Центр космических исследований (CN ES) разработал свой первый проект создания пилотируемой транспортной системы, получивший название «Гермес» («Hermes»). Промышленная разработка осуществлялась параллельно фирмами «Аэроспасьяль» и «Дасо-Авиасьон».
      На конференции Европейского Космического агентства, проходившей в Риме в 1985 году, Франция проинформировала партнеров о своем намерении начать осуществление этого проекта. Два года спустя собравшиеся в Гааге представители агентства согласились сделать проект общеевропейским.
      Многоразовый космический корабль «Гермес» представляет собой воздушно-космический самолет с низкорасположенным крылом большой стреловидности в плане, выполненный по аэродинамической схеме «бесхвостка».
 
      Как и у других известных воздушно-космических самолетов, крыло имеет тупую лобовую кромку с большим радиусом закругления и оснащено односекционными элевонами. Законцовки крыла плавно переходят в концевые шайбы, являющиеся по сути разнесенным двухкилевым оперением, оснащенным рулями направления. В задней части фюзеляжа установлен ставший уже традиционным для таких аппаратов балансировочный щиток.
      Теплозащита использует апробированные теплоизоляционные материалы нескольких типов, расположенные на корпусе в соответствии с максимальными рабочими температурами поверхности. В зонах наибольшего нагрева (более 1400 °C) предполагалось использование углеродных композиционных материалов на основе углеродной матрицы, в других местах — теплозащитные плитки на основе карбида кремния и гибкие теплозащитные покрытия.
      Процесс выбора облика воздушно-космического самолета протекал долго и трудно — несколько раз проект коренным образом пересматривался. Однако и последняя версия «Гермеса» не является оптимальной. Конструкторам так и не удалось полностью скомпоновать многоразовый космический корабль: из-за жестких весовых лимитов выбранной схемы целый ряд систем, используемых в орбитальном полете, пришлось вынести в одноразовый, сбрасываемый перед спуском с орбиты ресурсный модуль, играющий роль своеобразного служебно-агрегатного отсека. Этот же ресурсный модуль должен использоваться в качестве шлюзовой камеры при выходах членов экипажа в открытый космос. Таким образом, назвать корабль «Гермес» многоразовым, как «Спейс Шаттл» или «Буран», нельзя.
      К недостаткам воздушно-космического самолета «Гермес» можно отнести и отсутствие негерметичного отсека полезного груза, что серьезно снижает возможности использования самолета для транспортных операций; таким образом габариты доставляемого на орбиту груза ограничены размерами (просветом) люка стыковочного узла. После катастрофы корабля «Челленджер» проект подвергся коренной переработке — количество членов экипажа было сокращено до трех, каждое рабочее место предусматривало оснащение катапультируемыми креслом, разработанным на основе катапультируемого кресла «К-36» корабля «Буран».
      Выведение «Гермеса» на орбиту планировалось осуществлять ракетой-носителем «Ариан-5», запускаемой с космодрома Куру во Французской Гвиане. В стартовом положении он размещается сверху носителя. Боковая дальность при возвращении корабля на Землю с орбиты должна составить 1500–2000 километров. Полная масса орбитального корабля — 21 тонна, сухой конструкции — 13,9 тонны. Полезный груз может весить 3 тонны.
      Благодаря широкому сотрудничеству в космической области между Советским Союзом и Францией французы в своем проекте широко использовали советский научно-технический задел. В частности, отряд французских «спасьонавтов» прошел полный курс обучения по методикам полетов на воздушно-космических самолетах. В системе теплозащиты «Гермеса» предполагалось использовать покрытия, разработанные для «Бурана». Французами использовались советские методики гиперзвуковых аэродинамических расчетов.
 
      В первой половине 90-х годов проектанты «Гермеса» зашли в тупик: с одной стороны им не удалось уложиться в жесткие весовые лимиты, с другой — в процессе проектирования ракеты «Ариан-5» расчетная масса выводимой полезной нагрузки постоянно уменьшалась и в конечном итоге стала ниже допустимой для вывода воздушно-космического самолета на орбиту. Возникла необходимость перепроектировать «Гермес», что требовало дополнительного финансирования. Однако денег не нашлось, и проект был закрыт.

Британская космонавтика

      В 1965 году британские конструкторы предложили проект трехэлементного воздушно-космического корабля «Мустард» («Mustard»), предназначенного для вывода полезного груза массой около 3 тонн на полярную орбиту высотой около 550 километров.
      «Мустард» состоит из трех пилотируемых ступеней, аналогичных по конструкции и геометрическим размерам Масса каждой ступени около 137 тонн. Одна из ступеней выводится на околоземную орбиту, а две другие выполняют функции разгонных и являются носителями топлива.
      Промежуточная орбита высотой 185 километров используется для запуска орбитальной ступени на расчетную орбиту, а также при сходе аппарата с орбиты перед входом в плотные слои атмосферы.
      После выполнения своих функций ступени входят в атмосферу аналогично самолету и возвращаются в район старта.
      Двигательная установка каждой ступени состоит из четырех ракетных двигателей, работающих на жидких водороде и кислороде. Кроме того, для возвращения в район старта на ступенях устанавливаются турбореактивные двигатели, также работающие на криогенном топливе. Центральный бак для жидкого кислорода выполнен из стали, а баки для жидкого водорода — из титана. Между баком жидкого водорода и нижней поверхностью конструкции ступени проложена изолирующая прокладка.
      Проблема балансировки ступени в зависимости от вида полезного груза решается путем соответствующей загрузки двух грузовых отсеков, один из которых расположен внизу под отсеком экипажа, а другой — в зоне силового каркаса крепления двигателя между баком окислителя и двигателями.
      Первый отсек предполагается использовать при полете на орбиту, а второй — при возвращении ступени с орбиты.
      Двигательные установки всех трех ступеней при старте включаются одновременно. При этом возможны два варианта питания ступеней топливом. По первому варианту разгонные ступени питают топливом двигательную установку ступени, предназначенной для выхода на орбиту. По второму варианту двигательные установки всех трех ступеней работают на топливе из своих баков, выводят аппарат на орбиту высотой 55,5 километра при скорости 2 км/с.
      Во время непродолжительного полета в баки ступени, предназначенной для выхода на орбиту, перекачивается топливо из разгонных ступеней, что приводит к некоторой потере скорости. Однако в конструктивном отношении вариант перекачки является более простым, чем подача топлива в орбитальную ступень с момента пуска. После разделения трех ступеней обе разгонные ступени входят в атмосферу и разворачиваются в направлении к месту пуска. При дозвуковой скорости полета запускается ТРД и ступень совершает полет к месту посадки. Дальность полета на крейсерском режиме достигает 600 километров.
 
 
      На третьей ступени, после ее отделения, повторно включается двигательная установка, и ступень осуществляет полет на расчетную орбиту. Для маневрирования на орбите в баках имеется дополнительный запас топлива.
      После выполнения задания (встречи и стыковки на орбите и осуществления необходимых погрузочно-разгрузочных операций) ступень тормозится до требуемой скорости. Затем происходит слив остатка топлива из специальных баков и ступень возвращается на Землю. Угол атаки при входе в атмосферу составляет приблизительно 40°.
      В зарубежной печати сообщалось, что стоимость трехэлементного корабля «Мустард» сравнительно невысока, так как все три ступени аналогичны по конструкции.
      Как полагают специалисты, до проведения первого капитального ремонта разгонные ступени можно использовать до 200 раз, а орбитальную ступень — до 25 раз.
      Работы по программе «ХОТОЛ» («HOTOL») были начаты в 1982 году, когда английские фирмы «Бритиш аэроспейс» и «Роллс-Ройс» в инициативном порядке провели поисковые проектные исследования по одноступенчатым аппаратам с горизонтальными взлетом и посадкой и по маршевым двигателям для них. В результате был предложен проект многоразового беспилотного аппарата «ХОТОЛ», основными назначениями которого являются выведение спутников на низкую орбиту и материально-техническое обеспечение космической станции, включая доставку космонавтов в пилотируемой капсуле, размещаемой в грузовом отсеке.
      Высокая экономичность системы «ХОТОЛ» достигается за счет исключения из его конструкции элементов и систем одноразового использования и сокращения затрат на предполетные операции. Значительную экономию эксплуатационных расходов дает практически полная автономия полетных операций, обеспечиваемая бортовыми радиоэлектронными системами.
      Габариты беспилотного орбитального самолета «ХОТОЛ»: длина — 62 метра, размах крыла — 20 метров, диаметр фюзеляжа — 5,7 метра, взлетная масса — 250 тонн, посадочная масса — 34–47 тонн, масса полезного груза на орбите высотой 300 километров — 11 тонн.
      Предполагается, что стартовать «ХОТОЛ» будет либо с разгонной аэродромной тележки, либо с самолета-носителя.
      Длина взлетной полосы — от 2,3 до 4 километров. Эксплуата ционный ресурс — 120 полетов.
      Особый интерес в конструкции орбитального самолета «ХОТОЛ» представляет маршевая кислородно-водородная двигательная установка «HOTOL RB454», способная функционировать последовательно в режимах воздушно-реактивного и жидкостного двигателей. С момента старта и до высоты 28 километров (скорость — 5 Махов) в течение 9 минут двигатель работает в режиме воздушного с использованием атмосферного воздуха, сильно охлажденного бортовыми средствами, а затем, до высоты 90 километров, — в режиме жидкостного двигателя. Довыведение полезного груза на расчетную орбиту осуществляется с помощью кислородно-водородной двигательной установки орбитального маневрирования.
      Главным новым элементом маршевого двигателя является крупногабаритный теплообменник, примыкающий к задней части воздухозаборника. В теплообменнике происходит глубокое охлаждение поступающего в двигатель воздуха за счет запаса холода в жидком водороде, что позволяет продлить работу двигателя в режиме воздушно-реактивного до скорости 5 Махов. Обычные турбореактивные двигатели имеют предельное значение скорости — 3 Маха. Повышение плотности воздушного потока позволяет уменьшить габариты турбокомпрессора. Нагретый водород используется для привода турбины. Кроме того, увеличивается теплосодержание водорода как горючего, компрессор повышает давление воздуха приблизительно до 140 атмосфер. Из компрессора воздух поступает в камеру сгорания, где взаимодействует с водородом, отработанным на турбине и подаваемым частично из бака Фирма «Бритиш аэроспейс» предложила британскому правительству программу разработки базовой технологии летательного аппарата «ХОТОЛ», разделенную на два трехгодичных цикла. В соответствии с ней изготовление должно было быть начато в 1994 году, а первый полет был запланирован на 2000 год.
      Однако в июле 1988 года правительство отказалось от дальнейшего финансирования проекта «ХОТОЛ», поскольку затраты (порядка 6 миллиардов фунтов стерлингов), необходимые для его доведения до стадии производства, слишком велики для одной Англии.
      Обращения фирм «Бритиш аэроспейс» и «Роллс-Ройс» к Европейскому Космическому агентству с предложением, официально признать и профинансировать программу «ХОТОЛ» закончились безрезультатно. Попытки фирм-разработчиков привлечь частный капитал британских и зарубежных аэро-космических фирм для спасения программы также не увенчались успехом.
      В сентябре 1990 года фирма «Бритиш аэроспейс» и Министерство авиационной промышленности СССР в ходе авиационно-космической выставки «Фарнборо-90» подписали соглашение о проведении совместных исследований по оценке технических возможностей и экономических аспектов использования находящегося в эксплуатации советского тяжелого самолета-носителя Ан-225 (Мрия) для запуска воздушно-космического самолета «ХОТОЛ».
      Воздушный старт позволяет применить в составе воздушно-космического самолета вместо ранее предполагаемой комбинированной маршевой двигательной установки связку из четырех кислородно-водородных двигателей, поставляемых Советским Союзом. Кроме того, воздушный старт заменяет пуск со стартовой разгонной тележки и обеспечивает воздушно-космический самолет некоторой начальной скоростью на высоте, где плотность атмосферы меньше.
      Основные характеристики «ХОТОЛ» с воздушным стартом: длина — 36,15 метра, размах крыла — 21,6 метра, полная масса космического самолета — 250 тонн, масса полезного груза на высоте 275 километров — 8 тонн.
      Полет «ХОТОЛ» на самолете-носителе «Ан-225» заканчивается разделением на высоте 10 километров при скорости 0,8 Маха, после чего следует горизонтальный разгон до 5 Махов.
      С этого момента начинается маневр выхода «на горку» с перегрузкой 1,4 g до высоты около 20 километров и скорости в 3 Маха. Далее происходит набор высоты па полубаллистической траектории с использованием тяги двигателей и подъемной силы крыла. Подъем осуществляется с постоянным углом наклона траектории к горизонту до высоты около 80 километров и скорости до 20 Махов. Тяга двигателей дросселируется, чтобы уровень перегрузки не превышал 3 g.
      Затем угол подъема уменьшается, и на высоте почти 90 километров при скорости 27,2 Маха космический самолет выходит на эллиптическую орбиту с перигеем 70 километров и апогеем 300 километров.
 
      Управление полетом «ХОТОЛ» на участке выведения осуществляется отклонением маршевым двигателей рулевыми двигателями на концах крыла, а также с помощью выдвижного переднего горизонтального оперения, стабилизатора и элеронов при управлении по каналу крена.
      При входе в атмосферу управление полетом, при убранном оперении, обеспечивается двигателями на концах крыла.
      При движении в плотных слоях атмосферы управление полетом осуществляется с помощью выдвижного переднего стабилизатора, элеронов и подфюзеляжного щитка.
 
      После того как фирме «Бритиш аэроспейс» было отказано в финансировании проекта «ХОТОЛ», часть специалистов, работавших над ним, учредила новую фирму «Риэкшен Энжинес» («Reaction Engines Ltd.»), основным направлением деятельности которой является создание воздушно-космического самолета «Скайлон» («Skylon»). Конструкторам «Риэкшн Энджинес» не позволили использовать в своей работе задел по воздушно-реактивным двигателям «HOTOL RB454», поскольку они остаются секретными, поэтому им пришлось разработать новый двигатель «SABRE» («Synergic Air Breathing Engine»), работающий как воздушно-реактивный на скоростях до 5,5 Маха, а затем переключающийся в режим ЖРД.
      Согласно проектным расчетам, «Скайлон», имея грузовой отсек 12,3 на 4,6 метра, может доставлять на экваториальную орбиту 12 тонн полезного груза или 9,5 тонны — к Международной космической станции.
      В 1997 году проект «Скайлон» изучался Европейским Космическим агентством, как один из возможных вариантов перспективного орбитального транспортного средства Кроме того, обсуждалась возможность участия проекта «Сайлон» в конкурсе «Икс-Прайс» на создание туристического космоплана.
      Общая стоимость реализации проекта «Скайлон» оценивается в 10 миллиардов долларов.

Немецкая космонавтика

      Одним из первых космических проектов, связанных с пилотируемой космонавтикой и разрабатываемых на земле ФРГ, был проект одноступенчатого транспортного космического корабля многократного использования VETA.
      Конструкция корабля базируется на технике и технологии ракеты «Сатурн-5» и отсеков кораблей «Аполлон». Считается, что основным преимуществом космического корабля «BETA» перед обычными ракетами является отсутствие сбрасываемых ступеней. Это позволяет запускать его со стартовых баз в европейских странах, а также производить посадку на площадки, не подготовленные для этой цели.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19