Современная электронная библиотека ModernLib.Net

Среди запахов и звуков

ModernLib.Net / Плужников Мариус / Среди запахов и звуков - Чтение (стр. 6)
Автор: Плужников Мариус
Жанр:

 

 


      Приятный — неприятный, скажете вы, это все очень расплывчато. Что они, не могли охарактеризовать его более конкретно? Нет, не могли. Дело в том, что у людей отсутствует абстрактное представление о запахах. В то время, как существует представление о соленом, горьком, кислом, сладком вкусе, когда можно выделить основные цвета спектра, представление о запахах является чисто предметным. Мы не можем охарактеризовать запаха, не называя вещества или предмета, которому он свойствен. Мы говорим о запахе роз или запахе лука, в некоторых случаях мы пытаемся обобщить запахи группы родственных веществ или предметов, говоря о цветочном или фруктовом запахе, запахах кухонных, парфюмерных, лакокрасочных. Точно так же невозможно вызвать в воображении какой-либо запах, не связывая его с определенным предметом.
      И все-таки запахи неоднократно пытались классифицировать, систематизировать, объединять в группы, используя элементы сходства запахов.
      Самая старая из всех известных классификаций запахов принадлежит хорошо знакомому нам по школьному курсу зоологии Карлу Линнею, который предложил свою классификацию в 1756 году и при этом разбил все запахи на 7 классов.
      С тех пор неоднократно предлагались все новые и новые классификации, количество групп запахов в этих классификациях колебалось от 4 до 18, и все-таки ни одна из них не отвечает современным требованиям. Разберем несколько подробнее самые удачные из этих классификаций.
      Одной из наиболее разработанных и наиболее употребляемых систем классификации является система X. Цваардемакера, опубликовавшего ее в первом варианте в 1895-м, а в окончательном виде — в 1914 году. Цваардемакер делил все пахучие вещества на 9 классов.
      Некоторые классы Цваардемакер делил на подклассы. Так, среди ароматических запахов он выделял: а) камфарные запахи, б) пряные, в) анисовые, г) лимонные и д) миндальные запахи. Среди бальзамических запахов: а) цветочные, б) лилейные и в) ванильные запахи.
      Классификация Цваардемакера подвергалась и подвергается справедливой критике (но, несмотря на это, ею, за неимением лучшей, иногда продолжают пользоваться до сих пор). Классификация эта очень субъективна. Например, к классу противных запахов Цваардемакер отнес лишь 2 подкласса: а) наркотические запахи и б) запах клопов. Несмотря на явно неполную трактовку запахов этой группы, в ней есть и принципиальная неточность: наркотики обладают весьма различными запахами. Разница между каприловыми, противными, и тошнотворными запахами также весьма субъективна и вряд ли заслуживает выделения в разные группы.
      К сожалению, один из важнейших недостатков системы Цваардемакера — произвольность в распределении веществ по различным классам — существует и в некоторых других системах классификации запахов.
      Заслуживает внимания предложенная в последнее время и на первый взгляд свободная от этих субъективных просчетов классификация запахов Крокера и Хендерсона. Она основана на выделении 4 основных запахов: ароматного, кислого, жженого и каприлового (в переводе с латинского — "козлиного") и 4 типов отвечающих им обонятельных рецепторов.
      Согласно их теории любой запах рассматривается как смесь четырех основных запахов в различных соотношениях. Для сложного запаха интенсивность каждого из основных запахов дается цифрами от 0 до 8, так что все запахи могут быть представлены четырехзначными числами от 0001 до 8888. Следовательно, по этой системе можно обозначить лишь 8888 запахов, хотя сам Крокер констатировал, что "существуют сотни тысяч различных запахов". Практическая ценность классификации Крокера-Хендерсона в том, что по ней хоть каким-то образом можно систематизировать описание запахов.
      Упомянем еще одну довольно интересную классификацию, так называемую "обонятельную призму" Хенинга, предложенную им в 1924 году. По системе X. Хенинга все обонятельные ощущения графически изображены в виде призмы, на углах которой обозначены шесть основных обонятельных ощущений: цветочный, фруктовый, пряный, смолистый и пригорелый. Хенинг считал, что все запахи, которые не могут быть прямо отнесены к одному из перечисленных шести классов, должны были занять в этой призме положение на ребрах, на плоскости или внутри ее, в зависимости от того, со сколькими и с какими классами обнаруживалось у них сходство.
      Основной недостаток системы Хенинга заключался в том, что он построил свою схему обонятельных ощущений по аналогии со схемами цветовых или вкусовых ощущений, в то время как выделить основные обонятельные ощущения пока никому не удавалось.
      Приходится признать, что мы пока еще не обладаем научно обоснованной системой классификации запахов. Несмотря на огромные достижения химии и физиологии, этот вопрос остается открытым. По-видимому, создать четкую и стройную систему классификации запахов будет возможно только тогда, когда будет создана единая, научно обоснованная теория обоняния.
      Рассмотрим и этот вопрос, но для начала познакомимся с анатомией обонятельного анализатора.
      Обонятельные функции несет только участок слизистой, находящийся в области верхних носовых ходов и занимающий площадь примерно в 5 квадратных сантиметров (по 2,5 квадратного сантиметра в каждом носовом ходе). Обонятельные клетки имеют форму веретена или бокала с двумя отростками — периферическим и центральным. Периферические доходят до поверхности слизистой оболочки и заканчиваются булавовидными утолщениями, на которых сидят несколько ресничек. У человека, как и других высших животных, обонятельный эпителий покрыт тончайшей жировой пленкой, так называемой "ольфактивной (обонятельной) мембраной". Булавовидные утолщения наружных отростков. обонятельных клеток лежат либо на этой мембране, либо под ней.
      Благодаря подвижности шеек, на которых сидят обонятельные булавы, они способны подниматься на поверхность ольфактивной мембраны и вступать в контакт с пахучим веществом или же, погружаясь в глубь эпителия, от этого контакта освобождаться.
      Центральные отростки обонятельных клеток образуют тонкие нити, которые, проникая через "ситовидную пластинку" крыши полости носа, вступают в полость черепа. Эти волокна в отличие от прочих нервов не образуют единого ствола, а проходят в виде нескольких (до 20) тонких нитей через отверстия ситовидной пластинки. На нижней поверхности лобной доли головного мозга они сходятся, образуя утолщения — обонятельные луковицы, которые переходят сзади в обонятельный нерв, волокна которого вступают в вещество мозга. О корковых центрах обонятельного анализатора мы уже говорили в начале главки.
      Итак, мы познакомились с анатомией обонятельной системы, но это не продвинуло нас в решении вопроса, почему мы чувствуем запахи.
      Впервые ответ на этот вопрос попытался дать 2000 лет назад римский поэт Лукреций Кар в своей поэме "О природе вещей". Он думал, что не нёбе имеются маленькие поры различной величины и формы. Каждое пахучее вещество, говорил он, испускает мельчайшие "молекулы" определенной формы, и запах ощущается тогда, когда эти молекулы входят в поры на нёбе. По-видимому, опознание каждого запаха зависит от того, к каким порам подходят его молекулы.
      С тех пор было предложено порядка 30 теорий. Наибольшую дискуссию вызывал вопрос, должны ли молекулы пахучего вещества приходить в контакт с рецепторами или же оно излучает волны, которые и раздражают рецепторы. Вследствие этого все теории разделились на контактные и волновые.
      Особое распространение волновые теории получили в XVIII веке, по аналогии с волновой теорией света и волновой теорией слуха. Сторонники этой теории приводили в качестве аргумента феноменальную способность насекомых различать запахи на огромных расстояниях. Известно, что самец тутового шелкопряда может ощущать запах самки на расстоянии до 10 километров. Трудно предположить, что мельчайшие молекулы вещества могут переноситься на такие расстояния. Буревестники, глупыши и альбатросы чувствуют запах рыбы с расстояния более трех километров, а некоторые акулы способны ощущать запах крови, если ее концентрация в воде составляет одну миллионную долю процента.
      Но сейчас от волновых теорий в основном отказались все исследователи. Объясняется это тем, что волновая теория противоречит двум основным свойствам запаха:
      1. запах не может распространяться в безвоздушной среде
      2. вещества с запахом должны быть летучи.
      Такое вещество, как железо, при обычных температурах ничем не пахнет, потому что с его поверхности не происходит испарения молекул. Следовательно, запах обусловлен не волнами, испускаемыми этими веществами, а молекулами самого пахучего вещества.
      И все-таки сторонники волновых теорий, несмотря на столь сокрушительные аргументы, до сих пор не сложили оружия. Особого упоминания заслуживает теория Бека и Милеса. В ней предполагается, что орган обоняния подобен маленькому инфракрасному спектрофотометру, производящему инфракрасное излучение и замеряющему его поглощение молекулами, находящимися в самом органе обоняния. Экспериментальное подтверждение этой теории содержало интересные факты. Так, было доказано, что пчелы могут чувствовать запах меда, даже если он помещен в запаянный контейнер, который, однако, пропускает инфракрасное излучение.
      Если теория верна, это значило бы, что вещества с запахом, запаянные в полиэтилен и помещенные в нос, должны вызывать обонятельные ощущения, поскольку полиэтилен пропускает большую часть инфракрасного излучения. Но эксперименты на человеке показали, что в таких условиях нет никакого ощущения запаха. Поскольку инфракрасное излучение — тепловая энергия, поглощение его молекулами пахучего вещества будет происходить только в том случае, если его температура ниже, чем температура человеческого тела. Это также было опровергнуто.
      Последние сообщения печати о том, что крысы могут чувствовать рентгеновское излучение при помощи органов обоняния, ни в коей мере не оживляют волновую теорию, а только показывают, что изучение обоняния должно учитывать влияние радиации на обонятельные рецепторы.
      Поэтому все наши дальнейшие рассуждения будут касаться контактных теорий обоняния, и только их. Контактные теории, в свою очередь, делятся на две подгруппы в зависимости от того, химическим или физическим путем предположительно воздействуют контактирующие молекулы на обонятельные клетки.
      Теории физического взаимодействия молекул пахучего вещества и органов обоняния в основном рассматривают внутримолекулярные колебания молекул веществ, воздействующих на рецепторы. Наиболее показательной в этом отношении является вибрационная теория Дисона — Райта.
      Еще в 1937 году Г.М. Дисон сформулировал три необходимых условия пахучести вещества: летучесть, растворимость и внутримолекулярные колебания, которые дают пик в спектре Рамана в области 3500…1400 см -1. Он предположил, что колебательные частоты молекул могут быть оценены, исходя из спектра Рамана. Основываясь на известных, ограниченных еще в то время данных, Дисон считал, что область 3500…1400 см -1— это частоты, чувствительные для обонятельной зоны. Поскольку слух и зрение включают восприимчивость к колебаниям определенной частоты, весьма логично, казалось бы, построить теорию запаха по аналогии. Хотя в то время теория и привлекла внимание, но была быстро забыта, поскольку не было обнаружено связи между колебаниями в области 3500…1400 см -1и запахом.
      Однако в 1956 году теория Дисона вновь была поднята Райтом. Райт полагал, что основная идея вибрационных частот, к которым восприимчивы обонятельные рецепторы, верна, но Дисон неправильно выбрал интервал частот. Известно, что результирующее поглощение сложного колебания молекулы в целом лежит в области низких частот, и поэтому Райт предложил в качестве обонятельной зону инфракрасных частот — от 500 до 50 см -1. Согласно этой теории колебательные частоты определяют качество запаха, тогда как летучесть, способность к адсорбции (поглощению), растворимость — его интенсивность. Считается, что все молекулы обонятельного эпителия находятся в состоянии электронного возбуждения с запрещенным переходом в основное состояние. Молекулы пахучего вещества комбинируются с молекулами обонятельного эпителия (причем с определенным соответствием колебательных частот), меняют частоту колебаний молекул эпителия и стимулируют возвращение возбужденной молекулы в исходное состояние. Для объяснения разнообразных запахов должно быть несколько типов клеток обонятельного эпителия.
      Основываясь на том, что нет примеров различия запахов оптических изомеров, Райт утверждал, что в основном в процессе обоняния играет роль физическое, а не химическое взаимодействие. Легкие различия в запахе некоторых оптических изомеров он относил к разной степени частоты колебаний. Изменение качества запаха при разведении, считал Райт, вероятно, происходит потому, что он состоит из нескольких более простых, имеющих различные пороговые значения, а при низкой концентрации фиксируются только определенные компоненты.
      В качестве экспериментальных подтверждений своей теории Райт приводил следующие: соединения, обладающие запахом горького миндаля, имеют сходные низкочастотные спектры; у синтетического мускуса есть линии поглощения в дальней инфракрасной области, где у других, немускусных соединений, их нет, и, наконец, наблюдается корреляция между низкочастотными колебаниями и биологической активностью полового притяжения насекомых.
      Вибрационная теория подвергалась справедливой критике, в особенности гипотеза о возбуждении электронов обонятельного эпителия. Достаточно привести такой пример: изотопные молекулы имеют одинаковый запах, хотя их колебательные частоты очень разнятся. Но сам факт, что к вибрационной теории вновь вернулись после 20-летнего забвения, говорит о том, что в основе ее лежит рациональное зерно. Может быть, при более детальной разработке и более солидной экспериментальной базе к ней обратятся и в третий раз.
      Что же утверждают сторонники химических контактных теорий? В течение многих лет химики эмпирическим путем синтезировали огромное количество пахучих веществ как для парфюмерии, так и для своих собственных исследований обоняния, но вместо того, чтобы пролить свет на свойства, от которых зависит запах, это только увеличивало путаницу. Было открыто лишь несколько общих принципов. Например, добавление боковой ветви к прямой цепи углеродных атомов весьма усиливает запах. Сильный запах оказался также свойственным молекулам некоторых спиртов и альдегидов, содержащих от четырех до восьми углеродных атомов. Однако чем больше химики анализировали химическое строение пахучих веществ, тем больше возникало загадок. С точки зрения химического состава и структуры эти вещества поражают отсутствием какой-либо закономерности.
      Но, как это ни парадоксально, само это отсутствие закономерности стало своего рода закономерностью. Например, два оптических изомера — идентичные во всех отношениях молекулы, кроме того, что одна является зеркальным отражением другой, — могут пахнуть по-разному. В веществах, молекулы которых содержат бензольное кольцо из шести углеродных атомов, изменение положения группы атомов, связанных с кольцом, может резко изменить запах, тогда как у соединений, молекулы которых включают большое кольцо из 14…19 атомов, такого рода перегруппировка заметного изменения их запаха не вызывает. Эти факты привели химиков к мысли о том, что, возможно, основным фактором, определяющим запах, является общая геометрическая форма молекулы, а не какая-либо деталь состава или структуры вещества.
      В 1949 году Р. Монкрифф оформил эти идеи, предложив гипотезу, сильно напоминавшую догадку Лукреция 2000-летней давности. Монкрифф предположил, что обонятельная система построена из рецепторных клеток немногих типов, каждый из которых воспринимает отдельный "первичный" запах, и что пахучие молекулы оказывают свое действие при точном совпадении их формы с формой "рецепторных участков" этих клеток. Он предположил, что существует от 4 до 12 типов рецепторов, каждый из которых отвечает основному запаху. Его гипотеза была новым приложением концепции "ключа и замка", которая оказалась плодотворной для объяснения взаимодействия ферментов с их субстратами, антител с антигенами, молекул ДНК с молекулами РНК.
      Дж. Эймур развил и детализировал теорию Р. Монкриффа. Потребовалось два усовершенствования: во-первых, установить, сколько существует видов рецепторов, и во-вторых, определить размеры и форму каждого из них. Для определения количества видов рецепторов Эймур установил число основных запахов, считая, что каждый из них отвечает форме рецептора. Это было достигнуто при объединении 600 соединений в группы на основе сходности запаха. На основании частоты встречающихся запахов удалось выделить 7 запахов, которые можно рассматривать как первичные.
      При смешивании первичных запахов в определенных пропорциях можно получить любой известный запах. Молекулы важнейших запахов могут совпасть только с одним видом рецепторов, тогда как молекулы сложных запахов должны подходить двум или даже большему числу видов рецепторов. Поэтому важнейшие запахи в чистом виде встречаются реже, чем сложные.
      Чтобы воспринять семь первичных запахов, в носу, согласно теории Эймура, должно быть семь различных типов обонятельных рецепторов. Ученый представлял рецепторные участки в виде ультрамикроскопических щелей или впадин в мембране нервного волокна, каждая из которых имеет своеобразную форму и величину. Предполагалось, что молекулы определенной конфигурации "вписываются" в каждый из этих участков, подобно тому, как штеккер входит в гнездо.
      Следующей проблемой было изучение формы семи рецепторных участков. Оно началось с исследования формы молекул различных пахучих веществ с помощью методов современной стереохимии. Оказывается, используя дифракцию рентгеновских лучей, инфракрасную спектроскопию, электронно-зондовый анализ и целый ряд других методов, можно построить трехмерную модель молекулы.
      Когда таким образом были построены молекулы всех соединений, обладающих камфарным запахом, оказалось, что все они имеют примерно одинаковую округлую форму и диаметр, равный семи ангстремам. Это означало, что рецепторный участок для камфарных соединений должен иметь форму полукруглой чаши такого же диаметра.
      Таким же способом были построены и модели других "пахучих" молекул. Выяснилось, что мускусный запах характерен для молекул дискообразной формы с диаметром около 10 ангстрем. Приятный цветочный запах вызывается молекулами дискообразной формы с гибким хвостом, как у воздушного змея. Прохладным мятным запахом обладают молекулы клинообразной формы. Эфирный запах обязан своим происхождением палочковидным молекулам. В каждом из этих случаев рецепторный участок на нервном окончании, по-видимому, имеет форму и величину, соответствующую форме и величине молекул.
      В настоящее время наиболее признана стереохимическая теория обоняния Монкриффа — Эймура. Она прошла целый ряд экспериментальных проверок, доказавших правильность ее основных положений. Эймур синтезировал несколько молекул определенных форм, и все они обладали предсказанным запахом.

Как измерить неизмеримое?

      Речь в этой главке пойдет об исследовании органа обоняния. Вопрос этот также крайне запутан, хотя по количеству предложенных устройств и по оригинальности их конструкций ольфактометры (приборы для измерения обоняния) могут соперничать, пожалуй, только с вечным двигателем, И в том и в другом случае гораздо интереснее сама идея конструкции, чем, к сожалению, конечный результат.
      Итак, нам предстоит познакомиться с ольфактометрией — наукой об измерении остроты обоняния (от латинских слов "ольфактио" — обоняние и "метрия" — измерение).
      Простейший, древнейший и, как это ни печально, пока еще распространенный, несмотря на свою примитивность, способ: непосредственное использование растворов пахучих веществ для измерения обонятельной чувствительности. Проще говоря, подносят к носу больного склянку с каким-либо пахучим раствором, открывают пробку и задают вопрос: чувствуете ли вы какой-либо запах? При этом определяют минимальную концентрацию водного, масляного или глицеринового раствора одного или нескольких пахучих веществ, вызывающую обонятельные ощущения. Предполагают, что концентрация паров пахучих веществ над жидкостью пропорциональна концентрации этого вещества в растворе.
      Перед испытуемым ставят две задачи: регистрировать появление обонятельных ощущений вообще и дифференцировать запах, так как порог распознавания всегда выше порога ощущения.
      Прототипом большинства приборов для изучения обоняния является прибор, предложенный в 1892 году русским физиологом Н.А. Савельевым. Прибор Савельева состоял из двугорлой склянки, в которую наливался раствор пахучего вещества. В одно горлышко склянки вставлялась стеклянная трубка, доходившая до дна сосуда, а в другое — П-образная стеклянная трубка, соединявшая первую склянку со второй, от которой отходила разветвленная трубка с оливообразными насадками, приспособленными для введения в нос. Исследуемый вставлял в нос оливы и втягивал воздух, который проникал в сосуд через прямую трубку и, проходя через слой жидкости, насыщался пахучими веществами и попадал через П-образную трубку во вторую склянку, а оттуда — в нос. Изменяя концентрацию раствора, можно было достичь изменения концентрации паров пахучих веществ.
      Вариантами прибора Савельева являлись весьма популярные как в нашей стране, так и за рубежом ольфактометры Х. Хенинга и X. Эльсберга — Дж. Леви.
      Прибор Хенинга состоял из большого числа двугорлых склянок, соединенных последовательно. Если соединить первую склянку со второй, концентрация пахучих паров уменьшится вдвое. Соединив вторую склянку с третьей, предварительно отключив ее от первой, можно понизить концентрацию паров в четыре раза и т. д. В каждой склянке имелось отверстие, через которое можно было понюхать воздух и определять, ощущается ли там примесь пахучего вещества.
      Прибор Эльсберга — Леви, предложенный в 1935 году явился дальнейшим усовершенствованием прибора Савельева. Авторы решили вводить пары пахучих веществ в нос под давлением и притом в строго дозированных количествах.
      Для этого они снабдили савельевскую склянку герметическим запором и предложили вводить в нее определенное количество воздуха при помощи шприца. Тем самым в склянке создавалось повышенное давление. В нос вставляли оливы, нажимали выпускной клапан, и воздух, насыщенный парами пахучего вещества, поступал в носовые ходы. Измерение обонятельной чувствительности заключалось в определении минимального количества воздуха, которое нужно ввести при помощи шприца в склянку, чтобы выходящая из нее струя воздуха вызвала бы при попадании в нос обонятельное ощущение.
      Идея банки Эльсберга — Леви оказалась весьма плодотворной и с небольшими изменениями дожила до наших дней. Имеющийся в настоящее время на вооружении советских оториноларингологов серийно выпускаемый ольфактометр модели Л.Б. Дайняк, по существу, представляет собой ту же самую банку Эльсберга — Леви, упрятанную в кожух. На лицевой панели кожуха расположен манометр, и обонятельные ощущения дозируются не в кубических сантиметрах, единицах вытесненного шприцом объема пахучего вещества, как предлагали Эльсберг и Леви, а в единицах давления, в миллиметрах водяного столба.
      В 1927 году уже упоминавшийся нами в предыдущей главке немецкий физиолог Цваардемакер предложил очень оригинальный прибор принципиально новой конструкции. Основная идея прибора заключалась в том, что втягиваемый в нос воздух предварительно проходил мимо легкоизмеримой поверхности, покрытой пахучим веществом, и насыщался его парами.
      В первоначальном виде прибор состоял из стеклянной трубки, один изогнутый конец которой вводился в нос, а другой вставлялся в полый цилиндр, сделанный из вещества, обладающего слабым запахом (каучука, воска, гуттаперчи и др.). Если трубка втянута в полость цилиндра, то воздух, прежде чем попасть в нос, проходит вдоль его внутренней стенки и приобретает соответствующий запах. Величина площади соприкосновения воздуха с пахучим веществом определяется степенью выдвижения трубки. Чем эта величина больше, тем сильнее ощущается запах. Если исследовали запах жидкого вещества, в ольфактометр вставляли глиняный пористый цилиндр, предварительно пропитанный этой жидкостью. А чтобы исследуемый не видел перемещения трубки, впереди цилиндра устанавливался экран, и цилиндр перемещался относительно трубки.
      В 1932 году А.А. Ушаков разработал метод, основанный совершенно на другом принципе. Он брал полоски фильтровальной бумаги, пропитывал их пахучими веществами и помещал в герметически закрытые коробочки. После извлечения полоски бумаги из коробки она сохраняла некоторое время запах, но интенсивность его убывала. Ушаков определял промежуток времени, в течение которого больной продолжал улавливать этот запах и принимал его за меру обонятельной чувствительности. Если вы внимательно читали первую главу, то, наверное, помните, где еще используется данный принцип. Вспомнили? Совершенно верно, это принцип камертона. Острота слуха оценивается по времени ощущения звука затухающего камертона. Поэтому метод Ушакова иногда называют "обонятельным камертоном".
      Несколько напоминает этот метод и концентрационный способ И.М. Кисилевского, предложенный в 1931 году. Он брал фильтровальные бумажки, смоченные раствором уксусной кислоты разной концентрации, и подносил их к носу испытуемого. В зависимости от того, какой концентрации раствор чувствовал испытуемый, определялась острота его обоняния.
      В 1938 году советский оториноларинголог Л.Б. Эпштейн предложил простой, но оригинальный способ. Разработанный им прибор состоял из металлического цилиндра, на дне которого находилось пахучее вещество, и стеклянной оливы, вставляемой в нос испытуемого. Между оливой и цилиндром помещалась рейка с 12 отверстиями. В них закладывали фильтры из тонкого шелка. Количество слоев шелка в разных отверстиях варьировало от 6 до 22. Чем толще слой, через который должно было пройти пахучее вещество, тем сильнее ослабляется его запах. Максимальное число слоев, при котором запах еще ощущается, являлось в данном случае мерилом остроты обоняния.
      Если бы мы писали руководство по ольфактометрии (а вы уже знаете, что это наука об измерении остроты обоняния), то подробно разобрали бы все виды ольфактометров, историю их возникновения и особенности конструкции. Но это было бы интересно (и причем очень интересно, уверяем вас) только специалистам.
      Работа над изучением остроты обоняния продолжается до настоящего времени. Мы могли бы назвать приборы, сконструированные в 70…80-е годы нашего века, основанные на самых последних достижениях физиологии, электроники, химии газовых смесей, но не станем этого делать по той простой причине, что поиск не завершен. Ни одна из моделей полностью не удовлетворяет исследователей, все они вскоре после создания подвергаются заслуженной критике. Само количество моделей ольфактометров говорит о том, что ни одна конструкция не является оптимальной. А потому в этом вопросе точку ставить рано.
      Этим мы преследуем и свои, немного корыстные цели. Может быть, кто-нибудь из наших читателей, заинтересовавшись ольфактометрией, предложит свои оригинальные конструкции. И может быть, именно эти модели окажутся наиболее плодотворными. Как знать? Время покажет.

"Душистая симфония жизни"

      Так называется небольшой рассказ Валентина Пикуля из его сборника исторических миниатюр "Кровь, слезы и лавры". Это даже не симфония — это гимн, гимн искусству парфюмеров, гимн окружающим нас душистым запахам. И свою главку, посвященную роли запахов в жизни человека, мы начнем цитатой из этой миниатюры.
      "…Из глубины веков дошли до нас первые благовония, сохранившие ароматы древности в усыпальницах египетских фараонов. Библейская Суламифь, соблазнявшая Соломона, плясала перед ним, излучая ароматы возбуждающих масел, пропитавших ее гибкое тело. В древних Афинах любая красавица знала, что руки должны пахнуть мятой, а лицо — пальмовым маслом. Изнеженные патриции гордого Рима буквально купались в благовониях, они опрыскивали ими не только свою одежду, но даже улицы, по которым должен проехать император.
      Города средневековья погибали среди отбросов и помойных канав, даже короли бывали вымыты дважды: при их рождении и перед их погребением. Женщины не ведали даже примитивной гигиены и, чтобы заглушить неприятный запах, окружали себя сильно пахнущими духами, вплоть до резкого мускуса, а путники той мрачной эпохи, еще не видя города, догадывались о его близости по запаху духов и помоев. Алхимики искали не только "секреты" золота и фарфора, но составляли остропахнущие мастики и эссенции, не боясь смешивать воедино мочу младенцев с настойкой из лепестков герани, порошок истолченных болотных жаб они перемешивали с цветами индийской пачули.
      В лавках Парижа времен Екатерины Медичи открыто торговали ядовитыми духами, чтобы отравить соперника или соперницу; тогдашние дамы знали, каким запахом привлечь кавалера, а какие духи способны вызвать в мужчинах отвращение… По аромату духов можно было определять сословное положение человека, ибо простая швея не имела права пользоваться духами, какие употребляли маркизы. Мода на запахи менялась, как и мода на одежды, и самые знатные дамы в понедельник благоухали иначе, нежели в субботу…"
      Прервем цитату писателя, заменив ее цитатой ученого. Приведем выдержку из статьи Дж. Эймура, хорошо нам знакомого по предыдущим главкам, создателя стереохимической теории обоняния: "…Для человека обоняние, возможно, стало менее важным как жизненно необходимое чувство, чем для многих животных, но мы все-таки зависим от этого чувства в гораздо большей степени, чем это нам кажется. Можно оценить важность обоняния для человека, вспомнив, какой безвкусной кажется пища при насморке и как неприятно действует дурной запах воды или спертый воздух в комнате. Управление запахами — важнейшая задача… парфюмерной и табачной промышленности. Без сомнения, обоняние оказывает влияние на нашу жизнь многими "тонкими" способами, которые мы не осознаем…"

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17