Современная электронная библиотека ModernLib.Net

Материалы для ювелирных изделий

ModernLib.Net / В. Б. Лившиц / Материалы для ювелирных изделий - Чтение (Ознакомительный отрывок) (стр. 3)
Автор: В. Б. Лившиц
Жанр:

 

 


Однако для создания последующей пластической деформации необходим рост внешней нагрузки. После достижения Рмax нагрузка на образец уменьшается, так как уменьшается площадь поперечного сечения образца. Образуется «шейка». В то же время напряжение (отношение силы, приложенной к образцу, к площади поперечного сечения) продолжает расти. Таким образом, можно отметить несколько стадий деформации материала под действием внешнего напряжения: упругая деформация (участок 0–2), текучесть (участок 2–3), упрочнение (участок 3–4) и разрушение (точка 5, соответствующая нагрузке Рk).

Основные характеристики прочности материала – предел текучести ?0,2, предел упругости ?упр, предел прочности ?в.

Предел упругости – максимальное напряжение, при снятии которого величина остаточной деформации не превышает тысячных долей процента. Предел прочности – временное сопротивление разрыву – максимальное напряжение, выдерживаемое образцом.

При выборе материала для изготовления ювелирных изделий эти характеристики играют немаловажную роль.

Высокий предел упругости и текучести обеспечивает неизменность формы и размера изделия при воздействии на него различных нагрузок. Высокий предел прочности препятствует разрушению изделия.

Одним из важных механических свойств материала является его твердость. Твердость – это способность материала сопротивляться пластической деформации при внедрении в него более твердого тела. Чем выше твердость материала, тем он лучше полируется до зеркально гладкой поверхности, меньше царапается в процессе эксплуатации, сохраняя внешний вид неизменным. Высокая твердость обеспечивает обычно и высокую износостойкость.

4.2. Механизм пластической деформации

Пластическая деформация осуществляется посредством сдвига внутри кристалла по определенным кристаллографическим плоскостям, которые называются плоскостями скольжения. Сдвиг в кристалле начинается при достижении внешним напряжением величины предела текучести. Так как зерна в образце ориентированы различно относительно внешнего напряжения, то пластическая деформация развивается в металле неоднородно. В первую очередь деформируются те зерна, которые ориентированы таким образом, что напряжение в их плоскости скольжения достигает величины напряжения сдвига. Форма зерна в результате многочисленных сдвигов изменяется. При этом, так как зерна взаимно связаны, происходит поворот соседних зерен, их ориентация относительно внешнего напряжения изменяется, и пластическая деформация распространяется на другие зерна. Постепенно все зерна металла деформируются, их форма изменяется, зерна вытягиваются в направлении приложенного напряжения. В кристаллической структуре металла возникают дефекты.

В результате пластической деформации изменяются механические свойства металла: прочность увеличивается, пластичность уменьшается. Это явление называется «наклеп».

Упрочнение металла при пластической деформации и уменьшение его пластичности ограничивает возможность дальнейшей деформации. Так, при волочении проволоки с уменьшением сечения при следующих проходах через фильеру возникают обрывы.

На рис. 4.2 показана зависимость прочности и пластичности латуни Л68 от степени пластической деформации. В качестве характеристики пластичности выбрано относительное удлинение, ?%, т. е. отношение прироста длины разрушенного образца к его первоначальной длине. Степень пластической деформации оценивается по отношению:

с. п.д. = (d20 – d2д / d20,

где с.п.д. – степень пластической деформации,

dQ – диаметр проволоки до волочения,

dд – диаметр проволоки после волочения.

Рис. 4.2. Влияние степени холодной пластической деформации на твердость (НВ), прочность (?в) и пластичность (?,%) латуни А68.


Упрочнение, вызванное предварительной пластической деформацией, можно снять нагревом деформированного металла. В процессе пластической деформации металл запасает энергию, и поэтому состояние его является неустойчивым. Однако при низких температурах диффузия в металле не происходит, так как подвижность атомов в твердом теле мала. При нагреве металла подвижность атомов увеличивается и, начиная с определенной температуры, возникают самопроизвольное зарождение новых, недеформированных зерен и их рост.

Этот процесс называется рекристаллизацей обработки или первичной рекристаллизацей. Температуру, при которой начинается этот процесс, называют температурой начала рекристаллизации Тнр. С повышением температуры выше температуры начала рекристаллизации образование и рост новых зерен продолжается вплоть до того, как будет достигнута температуры конца рекристаллизации Ткр. Температура начала рекристаллизации зависит от множества факторов. В первую очередь она связана с природой самого металла, для чистого металла ее можно приближенно оценить по температуре его плавления:

Тнр = 0,ЗТпл (К),

где Тпл – температура плавления металла,

Тнр – температура начала рекристаллизации.


Коэффициент 0,3 приближенный и зависит от чистоты металла. Для особо чистых металлов он уменьшается до 0,25—0,15, для сплавов увеличивается до 0,6.

Температура начала рекристаллизации зависит также от степени пластической деформации и уменьшается с увеличением степени пластической деформации.

Образование новых недеформированных зерен и снижение внутренней энергии металла за счет уменьшения концентрации дефектов приводит к изменению механических свойств.

На рис. 4.3 показана зависимость прочности и пластичности холоднодеформированного железа от температуры отжига. Пластичность и вязкость металлов и сплавов существенно зависят от размера зерна. В свою очередь, размер зерна зависит от температуры рекристализационного отжига и степени предварительной пластической деформации. В процессе рекристаллизации обработки размер зерна обычно уменьшается по сравнению с исходным, так как происходит влияние температуры отжига на прочность и пластичность холоднодеформированного металла.

Рис. 4.3. Зарождение новых мелких зерен, которые не успевают вырасти к моменту окончания процесса.


С увеличением температуры выше температуры конца рекристаллизации зерно продолжает расти. Особенно интенсивно это происходит в чистых металлах. На размер зерна оказывает влияние также степень предварительной холодной пластической деформации. Чем выше степень деформации, тем меньше размер рекристаллизованного зерна.

Температура рекристаллизации обработки является физической границей между холодной и горячей пластической деформацией.

Пластическая деформация ниже этой температуры является холодной. При этом возникает упрочнение металла – наклеп. Пластическая деформация при температурах выше температуры рекристаллизации называется горячей. При горячей пластической деформации наклеп непрерывно снимается процессом рекристаллизации. После горячей пластической деформации упрочнения металла не наблюдается.

Выбор температуры рекристаллизационного отжига определяется составом сплава и степенью холодной пластической деформации. Обычно она устанавливается на 50—100 °C выше температуры конца рекристаллизации.

5. Технологические свойства сплавов

Под технологическими свойствами металлов и сплавов понимают способность металла подвергаться различным видам обработки. К технологическим свойствам металлов и сплавов относятся: литейные, ковкость, или деформируемость, в горячем и холодном состоянии, свариваемость, прокаливаемость и обрабатываемость резанием.

5.1. Литейные свойства

Литейные свойства двух– и трехкомпонентных сплавов можно оценить по положению их на диаграмме состояния. Закономерности изменения литейных свойств определяются при построении кривых состав – литейное свойство в совокупности с диаграммой состояния. К литейным свойствам сплавов можно отнести жидкотекучесть, линейную и объемную усадки, трегциностойкость, поверхностное натяжение, вязкость и др.

Жидкотекучесть – свойство, характеризующее способность расплавов заполнять литейные формы.

Влияние различных факторов на жидкотекучесть. Величина жидкотекучести непосредственно не связана с вязкостью и поверхностным натяжением жидкого металла, а определяется интервалом кристаллизации и совокупностью теплофизических свойств металлов: теплотой кристаллизации, теплоемкостью и теплопроводностью, вязкостью, окисляемостью. При этом теплота кристаллизации является основным фактором: чем больше теплота кристаллизации, тем выше жидкотекучесть. Минимумы и максимумы жидкотекучести (X) сплавов в зависимости от состава отвечают определенным участкам и критическим точкам на диаграммах состояния (рис. 5.1). Сплавы с широким интервалом кристаллизации, как правило, обладают минимальной жидкотекучестью, а максимумы на диаграммах состав – жидкотекучесть соответствуют эвтектическим сплавам и химическим соединениям.

Рис. 5.1. Жидкотекучесть сплавов системы А-Б в зависимости от их состава.


Необходимо также учитывать размеры, форму кристаллов, образующихся в начальной стадии затвердевания сплавов, и теплоту их образования. Прослеживается следующая зависимость. Если первичные кристаллы растут в виде разветвленных дендритов, граница нулевой жидкотекучести, соответствующей температуре, при которой поток перестает течь, находится вблизи линии ликвидуса,

Если первичные кристаллы растут компактно и имеют небольшие размеры, то граница нулевой жидкотекучести тяготеет к линии солидуса, т. е. при выделении значительной части твердой фазы металл продолжает течь, что объясняется несвязанностью между собой выделившихся первичных кристаллов. Таким образом, увеличение размеров первичных кристаллов и образование ими разветвленной структуры снижает жидкотекучесть. Оценивая величину жидкотекучести, для получения более точных результатов необходимо также учитывать формы кристаллов, образующихся в начальной стадии затвердевания сплавов, и теплоту их образования.

На жидкотекучесть влияют также условия плавки и заливки, перегрев металла, насыщение металла посторонними включениями, условия подвода металла к форме.

Пробы для измерения жидкотекучести. Количественные значения жидкотекучести определяют по длине заполнения канала литейной формы с определенной площадью поперечного сечения.

Технологические пробы для определения жидкотекучести можно разделить на три вида:

– пробы, основанные на прекращении течения в сужающемся канале;

– пробы, основанные на прекращении течения вследствие кристаллизации металла в узком выходном канале;

– пробы, основанные на прекращении течения в длинном канале постоянного сечения вследствие охлаждения и кристаллизации.

К пробам первого вида (сужающийся канал) относятся клиновые пробы (рис. 5.2).

Рис. 5.2. Клиновая проба для определения жидкотекучести.


Показателем жидкотекучести в клиновой пробе является расстояние I между вершиной клина и закругленной вершиной затвердевшего металла.

Пробы второго вида – шариковые – можно использовать для определения жидкотекучести по весу вытекшего металла.

Мерой жидкотекучести в шариковой пробе, предложенной А. Г. Спасским (рис. 5.3), является диаметр отверстия, образующегося в отливке, залитой в металлическую форму 1 с вертикальным разъемом. Металл заливается через воронку 4, поступает в полость формы через литниковый канал 5, заполняет полость формы и подтекает в пространство между планкой (клином) 3 и шариком 2 диаметром 20 мм, но не заполняет все пространство, оставляя отверстие.

Рис. 5.3. Шариковая проба для определения жидкотекучести (по А. Г. Спасскому):

1 – полуформа; 2 – шарик; 3 – клин; 4 – воронка; 5 – литниковый канал.


Клиновые и шариковые пробы можно использовать для оценки заполнения тонких рельефов.

К пробам третьего вида относятся прямые, спиральные, U-образные, лабиринтные и винтовые.

Пробы этого вида дают более точные результаты с меньшим разбросом параметров. Показателем жидкотекучести является длина пути потока металла до остановки. Пробы третьего вида заливают гравитационным или вакуумным методом. К этому же виду можно отнести пробы с несколькими каналами разной толщины, заполняемыми из общего центрального стояка.

Наибольшее распространение получили спиральные (рис. 5.4.) и U-образные (рис. 5.5) пробы с гравитационным заполнением. Испытание материала на жидкотекучесть заключается в заполнении спиральной или U-образной формы расплавленным металлом и определении длины полученной спиральной или U-образной пробы. На модели спирали и соответственно в форме имеются отметки через каждые 50 мм. Длина спирали (в спиральной пробе) или длина заполнившейся части вертикального канала диаметром б мм (в U-образной пробе), выраженные в миллиметрах, являются характеристикой жидкотекучести сплава в данных условиях.

Рис. 5.4. Спиральная проба для определения жидкотекучести по Самарину-Нехендзи:

1 – чаша нарощалка; 2 – сетка, 3 – стояк, 4 – зумпф, 5 – бобышка спираль, 6 – выступы

Рис. 5.5.

U-образная проба для определения жидкотекучести литейных сплавов.


Причем спиральная проба проводится для материалов с высокой жидкотекучестью (для чугунов, силуминов и т. д.), U-образная проба – для материалов, обладающих относительно низкой жидкотекучестью (для высоколегированных сталей, жаропрочных и тугоплавких металлов и сплавов).

При этом основным является определение условий остановки движущегося потока: выделение 20 % твердой фазы, образование на конце потока прочной твердой корочки, рост в канале литейной формы дендритов, препятствующих движению потока, накопление твердых кристаллов на конце потока.

Для обеспечения идентичных условий заполнения проб при сравнении жидкотекучести предложено различать два вида жидкотекучести: практическую и условную.

Практическая жидкотекучесть определяется в условиях постоянной температуры заливки (и, следовательно, неодинакового перегрева для всех сплавов данной группы). При этом можно оценивать влияние на жидкотекучесть изменений химического состава сплава в цеховых условиях, при поддержании постоянной температуры в плавильном агрегате. Условная жидкотекучесть определяется в условиях одинакового перегрева над температурой ликвидуса. Данный вид пробы получил наибольшее распространение.

<p>Заполняемость</p>

Способность расплава не только заполнять форму, как в случае жидкотекучести, но и способность заливать тонкий рельеф поверхности формы, например черты лица, складки одежды, тончайший орнамент украшений, называется заполняемостью.

Заполняемость характеризует способность металлов и сплавов давать особо тонкие сечения отливок, где в значительной степени проявляется действие капиллярных сил.

Заполняемость форм металлом зависит от комплекса технологических факторов, характеризующих условия заполнения формы. Составляющими этого комплекса являются жидкотекучесть металла, теплопроводность формы и ее температура, конфигурация будущей отливки и ее расположение в форме, конструкция литниковой системы и др.

Заполняемость формы расплавом обусловлена рядом факторов: 1) поверхностным натяжением сплава и смачиваемостью формы; 2) вязкостью сплава, связанной с его теплофизическими свойствами; 3) температурным интервалом кристаллизации; 4) формой и размерами первичных кристаллов; 5) склонностью сплава к пленообразованию; 6) теплофизическими свойствами формы; 7) способом заливки металла (стационарный или центробежный); 8) конструктивными особенностями литниковой системы; 9) наличием газов в форме и условиями ее вентиляции.

Очевидно влияние смачивания расплавом формы на ее заполняемость, а именно чем больше угол смачивания, тем лучше заполняемость.

Весьма эффективным способом получения тонких элементов отливок является центробежная заливка.

<p>Усадка</p>

Металлы в жидком состоянии занимают больший объем, чем в закристаллизовавшемся. Поэтому при переходе металла из жидкого состояния в твердое и дальнейшем охлаждении занимаемый им объем уменьшается.

Эту особенность необходимо учитывать. Для получения отливки, близкой по конфигурации к готовому изделию, необходимо модель изделия изготавливать больше отливки на величину усадки. Величина усадки у каждого металла различна. Например, усадка олова при литье в песчано-глинистые смеси равна 0,2–0,3 %, серого чугуна 1,1–1,2 %, силумина столько же, фосфористая бронза дает усадку 1,3–1,4 %, алюминиевая бронза 1,4–1,5 %, томпак 2–2,1 %, нейзильбер 2–2,1 %, художественная бронза 1,5 %, сталь от углеродистой до легированной – от 0,8 до 2,5 % и т. д. Таким образом, зная величину усадки (она бывает свободная и затрудненная), можно определить, на сколько больше следует изготовить форму, чтобы получить отливку с определенной точностью размеров.

Объемная усадка металла – изменение объема металла при его охлаждении, которое практически зависит от изменения температуры (если нет агрегатных или аллотропических превращений):


V1 = V0 [1 – ?? (t0t1)],


где V1 – объем при данной температуре t1; V0 – начальный объем при температуре t0; ?? – коэффициент объемной усадки (сжатия), т. е. коэффициент, соответствующий усадке при понижении температуры на 1° в интервале t0t1.

Объемная усадка определяется различием плотности сплава в жидком и твердом состояниях, величиной интервала кристаллизации и характером кристаллизации внутри интервала.

Полная объемная усадка металлов и сплавов происходит в несколько этапов: усадка в жидком состоянии при охлаждении, усадка при затвердевании и усадка в твердом состоянии – и, соответственно, является их суммой. Это одно из основных литейных свойств, определяющих качество отливки.

Усадка металла в жидком состоянии — изменение объема жидкого металла при его охлаждении до температуры ликвидуса (tл), в результате чего уровень жидкого металла понижается, а сечение остается неизменным и рассматривается как объемная усадка. Для сплава данного состава усадка в жидком состоянии (?Vж) является переменной величиной, зависящей от коэффициента объемной усадки жидкого металла (?Vж) и от температуры заливки (tж):

?Vж = ?Vж (tжtл).


Усадка металла при затвердевании — это изменение объема металла при переходе из жидкого состояния в твердое, реализующееся в основном в интервале температур между линиями ликвидуса и солидуса. Объем может уменьшаться (например, при затвердевании стали) или увеличиваться – предусадочное расширение (например, при затвердевании чугуна).

Конец бесплатного ознакомительного фрагмента.

  • Страницы:
    1, 2, 3