Современная электронная библиотека ModernLib.Net

Мечты об окончательной теории

ModernLib.Net / Физика и астрономия / Вайнберг Стивен / Мечты об окончательной теории - Чтение (стр. 14)
Автор: Вайнберг Стивен
Жанр: Физика и астрономия

 

 


В рамках любой теории поля интенсивность взаимодействия зависит от числовых параметров двух типов: от масс (если они есть) частиц типа W, Z, переносящих взаимодействие, и определенных чисел, называемых константами связи или константами взаимодействияи характеризующих вероятность испускания и поглощения частиц, подобных фотонам, глюонам, Wи Z, в ядерных реакциях. Массы возникают в результате спонтанного нарушения симметрии, но константы взаимодействия – это числа, входящие в исходные уравнения теории. Любая симметрия, связывающая сильные, электромагнитные и слабые взаимодействия, даже после спонтанного нарушения будет приводить к точному равенству всех констант взаимодействия, т.е. к равенству интенсивностей сильных и электрослабых взаимодействий (если должным образом определить способ их сравнения). Кажущиеся различия между интенсивностями нужно будет тогда приписать спонтанному нарушению симметрии, приводящему к разнице в массах частиц-переносчиков взаимодействия, в полной аналогии с тем, как в стандартной модели разница между электромагнитными и слабыми силами обусловлена нарушением электрослабой симметрии, в результате которого у частиц Wи Zполучаются очень большие массы, а фотон остается безмассовым. Но ясно, что интенсивности сильных ядерных и электромагнитных взаимодействий не равныдруг другу – сильные взаимодействия, как это следует из самого их названия, намного сильнее электромагнитных, даже несмотря на то, что оба этих взаимодействия переносятся безмассовыми частицами, глюонами и фотонами.
      В 1974 г. возникла идея, как преодолеть указанное препятствие . На самом деле, константы взаимодействия всех типов зависят, хотя и очень слабо, от энергий процессов, в которых эти константы измеряются. В любой теории, объединяющей сильные и электрослабые взаимодействия, указанные константы взаимодействия должны быть обязательно равны друг другу при определеннойэнергии, однако значение этой энергии может существенно отличаться от тех значений, которые доступны в современных экспериментах. В стандартную модель входят три независимые константы взаимодействия (это одна из причин, по которой мы не удовлетворены этой моделью как окончательной теорией), так что само требование, что существует какая-тоэнергия, при которой все эти константы должны сравниваться по величине, является весьма нетривиальным. Накладывая это условие, можно предсказать одну связь между константами при энергиях существующих ускорителей , и это предсказание находится в разумном согласии с опытами. Хотя это всего лишь одно успешное количественное предсказание, но отсюда следует ободряющий вывод, что в этих идеях что-то есть.
      Таким же способом можно оценить и ту энергию, при которой все константы взаимодействия становятся равными по величине. При энергиях современных ускорителей сильное взаимодействие намного превосходит по интенсивности все другие силы и, согласно квантовой хромодинамике, убывает с ростом энергии очень слабо. Поэтому предсказывается, что та энергия, при которой все взаимодействия в стандартной модели станут одинаково сильными, должна быть очень большой, порядка 10 24эВ = 10 15ГэВ (вычисления, сделанные в последнее время, приводят, скорее, к значению 10 16ГэВ). Если действительно существует спонтанно нарушенная симметрия, объединяющая сильные и электрослабые взаимодействия, то должны существовать и новые тяжелые частицы, входящие наряду с W, Z, фотонами и глюонами в число переносчиков взаимодействия. Тогда энергия 10 15ГэВ должна соответствовать массе этих новых сверхтяжелых частиц. Как будет видно ниже, в современных теориях суперструн не требуется предполагать существование отдельной новой симметрии, связывающей сильные и электрослабые взаимодействия, но константы этих взаимодействий сравниваются при той же энергии 10 16ГэВ.
      Может показаться, что это всего лишь очередное недостижимо большое число, но когда в 1974 г. была получена эта оценка, в головах физиков-теоретиков зазвучали колокола. Мы все знали о существовании другой очень большой энергии, естественно возникающей в любой теории, пытающейся объединить гравитацию с остальными силами в природе. При обычных условиях сила тяготения намного меньше, чем силы, порождаемые сильными, электромагнитными или слабыми взаимодействиями. Никто никогда не наблюдал никакого влияния силы тяготения на процессы, происходящие между частицами на уровне отдельных атомов или молекул, да и мало надежды на то, что это когда-нибудь станет возможным. (Единственная причина, по которой тяготение кажется достаточно большой силой в нашей повседневной жизни, связана с тем, что Земля состоит из очень большого числа атомов, каждый из которых вносит свой крохотный вклад в поле тяготения на поверхности Земли.) Однако согласно общей теории относительности все эффекты тяготения связаны не только с массой, но и с энергией. Именно поэтому фотоны, у которых нет массы, но которые имеют энергию, отклоняются гравитационным полем Солнца. При достаточно больших энергиях сила тяготения между двумя типичными элементарными частицами становится столь же большой, как и любая другая действующая между ними сила. Та энергия, при которой это происходит, составляет примерно 10 19ГэВ. Ее называют планковской энергией .
      Поразительно, что планковская энергия всего лишь примерно в сто раз больше той энергии, при которой становятся равными константы сильного и электрослабого взаимодействий, несмотря на то, что и та и другая энергии неизмеримо превосходят энергии, обычно используемые в физике частиц. То, что эти две огромные энергии относительно столь близки, является серьезным доводом в пользу того, что нарушение любой симметрии, объединяющей сильные и электрослабые взаимодействия, – всего лишь часть более фундаментального нарушения той симметрии, которая объединяет гравитацию с другими силами в природе. Возможно, не существует отдельной единой теории сильных и электрослабых взаимодействий, а существует действительно единая теория гравитационных, сильных, электромагнитных и слабых взаимодействий .
      К сожалению, гравитация осталась в стороне от стандартной модели, и причина этого в необычайной трудности описания гравитации на языке квантовой теории поля. Можно, конечно, просто применить правила квантовой механики к уравнениям поля тяготения в общей теории относительности, но мы тут же сталкиваемся со старой проблемой бесконечностей. Например, если мы попытаемся вычислить вероятность того, что произойдет при столкновении двух гравитонов (частиц, являющихся квантами гравитационного поля), мы получим вполне заметный вклад в эту вероятность от процесса обмена одним гравитоном между сталкивающимися гравитонами. Но стоит только продолжить вычисления и учесть обмен двумя гравитонами, сразу же получаются бесконечные вероятности. Эти бесконечности можно устранить, если изменить уравнения Эйнштейна для гравитационного поля, добавив в них новое слагаемое с бесконечным постоянным множителем и подобрав его так, чтобы он сократил первую бесконечность. Но если теперь включить в вычисления процесс с обменом тремя гравитонами, то мы получим новые бесконечности, которые удастся сократить только добавлением новых бесконечных слагаемых в уравнения, и т.д., пока мы не придем к теории с неограниченно большим числом неизвестных констант. Подобные теории могут быть реально полезными при расчете процессов при низких энергиях, когда новые слагаемые в уравнениях поля пренебрежимо малы, но эти теории теряют всякую предсказательную силу, если пытаться применять их к гравитационным явлениям при планковских энергиях. На сегодняшний день расчеты физических процессов при планковских энергиях нам просто не под силу.
      Конечно, никто и не изучает экспериментально процессы при планковских энергиях (и к тому же не исследует на опыте какие-либо квантовые гравитационные процессы, вроде гравитон-гравитонного рассеяния при любых энергиях), но для того, чтобы теория могла рассматриваться как удовлетворительная, она не только должна согласовываться с результатами уже проделанных экспериментов, но должна давать разумные предсказания и для тех экспериментов, которые в принципе могут быть выполнены. В этом отношении общая теория относительности многие годы была в том же положении, что и теория слабых взаимодействий в конце 60-х гг., – она прекрасно согласовывалась с теми экспериментами, которые можно было осуществить, но содержала внутренние противоречия, показывавшие, что теория нуждается в модификации.
      Значение планковской энергии ставит перед нами еще одну труднейшую проблему. Дело не в том, что эта энергия так велика – она возникла в физике на таком глубоком уровне, что можно просто допустить, что планковская энергия есть характерная единица энергии, входящая в уравнения будущей окончательной теории. Загадка заключается в том, почему все другие энергии так малы? В частности, в первоначальной версии стандартной модели массы электрона, W, Zи всех кварков пропорциональны единственной массе, входящей в уравнения теории, – массе хиггсовской частицы. Из того, что мы знаем о массах Wи Z, можно вывести, что энергия, соответствующая массе хиггсовской частицы, не может превышать 1 000 ГэВ. Но это всего лишь 10 ?16планковской энергии. Это означает также, что существует иерархия симметрий: какая бы симметрия не объединяла гравитационные и сильные взаимодействия с электрослабыми взаимодействиями, она должна нарушаться в 10 16раз сильнее, чем симметрия, объединяющая электромагнитные и слабые взаимодействия. Загадка объяснения чудовищной разницы в величине фундаментальных энергий в современной физике элементарных частиц носит название проблемы иерархии.
      Более пятнадцати лет проблема иерархии стоит как кость в горле теоретической физики. Побудительным мотивом многих теоретических спекуляций последнего времени была необходимость ее решения. Подчеркнем, что здесь нет парадокса – в конце концов, почему бы какой-то энергии в фундаментальных уравнениях физики и не быть в 10 16раз меньше, чем другой, – но здесь есть тайна. Именно поэтому проблема так трудна. Парадокс, как убийство в запертой комнате, может иметь свое объяснение, но тайна принуждает нас искать ключи к ней вне рамок самой проблемы.
      Один из подходов к решению проблемы иерархии основан на идее симметрии нового типа, названной суперсимметрией , которая объединяет в новые «суперсемейства»частицы с разным значением спина. В суперсимметричных теориях есть несколько хиггсовских частиц, но симметрия запрещает появление каких-либо масс хиггсовских частиц в фундаментальных уравнениях теории . То, что мы называем массами хиггсовских частиц в стандартной модели, должно возникать в результате сложных динамических эффектов, связанных с нарушением суперсимметрии. В другом подходе , упоминавшемся выше, высказывается идея, что нарушение электрослабой симметрии происходит не за счет вакуумного среднего некоторого поля, а в результате какого-то сверхсильного взаимодействия.
      К сожалению, до сих пор нет ни малейших признаков существования в природе суперсимметрии или каких-то сверхсильных взаимодействий . Конечно, это не может являться решающим аргументом против названных идей – новые частицы, предсказываемые в этих теориях для решения проблемы иерархии, могут оказаться слишком тяжелыми, чтобы быть рожденными на существующих ускорителях.
      Мы ожидаем, что хиггсовские частицы или другие новые частицы, существование которых требуется в разных моделях решения проблемы иерархии, будут открыты на достаточно мощных новых ускорителях типа Сверхпроводящего суперколлайдера. Но нет ни малейших шансов, что любой ускоритель, какой мы только можем вообразить, сумеет ускорить отдельные частицы до тех чудовищно больших энергий, при которых объединяются все силы. Когда Демокрит и Левкипп обсуждали идею об атомах, они и вообразить не могли, что эти атомы в миллионы раз меньше, чем песчинки на берегу Эгейского моря, или что пройдет 2 300 лет прежде, чем будут получены доказательства существования атомов. Наши рассуждения подвели нас к берегу во много раз более широкого пролива: мы полагаем, что все силы природы объединяются при энергиях порядка планковской энергии, которая в 10 15раз больше самой большой энергии, доступной сегодняшним ускорителям.
      Открытие этого колоссального пролива оказало на физику влияние, далеко выходящее за рамки проблемы иерархии. С одной стороны, возникло новое понимание старой проблемы бесконечностей. В стандартной модели, как и в старой доброй квантовой электродинамике, испускание и поглощение фотонов и других частиц неограниченно больших энергий приводило к бесконечно большим вкладам в энергию атома и другие наблюдаемые величины. Чтобы разобраться с этими бесконечностями, потребовалось, чтобы стандартная модель обладала особым свойством перенормируемости, заключающемся в том, что все бесконечности в теории должны сокращаться с другими бесконечностями, возникающими в определениях голых масс и других констант, входящих в уравнения теории. Это условие было очень существенным подспорьем при построении стандартной модели – только теории с простейшими из возможных уравнениями являются перенормируемыми. Но поскольку стандартная модель не включает гравитацию, мы полагаем сейчас, что она есть только низкоэнергетическое приближение к действительно фундаментальной единой теории, теряющее применимость при энергиях близких к планковской. Почему же тогда надо серьезно относиться к тому, какие предсказания дает эта теория относительно испускания и поглощения частиц неограниченно больших энергий? А раз это не имеет значения, то зачем тогда требовать перенормируемости стандартной модели? Проблема бесконечностей остается с нами, но это проблема будущей окончательной теории, а не ее низкоэнергетического приближения вроде стандартной модели.
      В результате такого переосмысления проблемы бесконечностей, мы полагаем сейчас, что полевые уравнения стандартной модели не относятся к очень простому перенормируемому типу, а содержат на самом деле все мыслимые слагаемые, совместимые с симметриями теории. Но тогда нам следует объяснить, почему старые перенормируемые квантовые теории поля, вроде простейших версий квантовой электродинамики или стандартной модели работают так хорошо. Мы думаем, что причина этого коренится в том, что все члены в уравнениях поля, за исключением перенормируемых, обязательно возникают в этих уравнениях поделенными на какую-то степень величины порядка планковской энергии. Поэтому вклад таких слагаемых в любой наблюдаемый физический процесс будет пропорционален степени отношения энергии процесса к планковской энергии, т.е. величине порядка 10 15. Это такое крохотное число, что естественно, все такие эффекты невозможно наблюдать. Иными словами, условие перенормируемости, являвшееся путеводной нитью всех наших размышлений от квантовой электродинамики в 40-х гг. до стандартной модели в 60-х и 70-х гг., было правильным с точки зрения практических целей, хотя причины, по которым требовалось выполнение этого условия, кажутся сейчас уже не имеющими отношения к делу.
      Это изменение точки зрения имеет потенциально далеко идущие последствия. В простейшей перенормируемой версии стандартной модели возникают некоторые «случайные» законы сохранения помимо реальных фундаментальных законов сохранения, вытекающих из симметрий специальной теории относительности и внутренних симметрий, определяющих существование фотона, W, Zи глюонов. Среди этих случайных законов сохранения присутствуют закон сохранения кваркового числа (равного разности полного числа кварков и антикварков) и лептонного числа (равного разности полного числа электронов, нейтрино и аналогичных частиц и полного числа соответствующих античастиц). Если выписать все возможные слагаемые в уравнениях поля, которые совместимы с фундаментальными симметриями стандартной модели и условием перенормируемости, обнаруживается, что в уравнениях поля не появляется слагаемого, которое может привести к нарушению указанных дополнительных законов сохранения. Именно законы сохранения лептонного и кваркового числа не допускают существование процессов типа распада трех кварков в протоне на позитрон и фотон, т.е. эти законы сохранения обеспечивают стабильность обычной материи. Однако сейчас мы полагаем, что сложные неперенормируемые слагаемые в уравнениях поля, приводящие к нарушению законов сохранения лептонного, и кваркового чисел, все же есть, но они очень малы. Эти малые слагаемые в уравнениях поля индуцируют распад протона (например, на позитрон и фотон или какую-нибудь другую нейтральную частицу), но время жизни протона относительно такого распада очень велико, порядка 10 32лет или чуть меньше или больше. Это число лет совпадает с числом протонов в 100 тоннах воды, так что, если предсказание верно, то в среднем за один год в 100 тоннах воды должен распасться один протон. Поиски такого распада протона безуспешно ведутся уже много лет, но скоро должна войти в строй установка в Японии, где в 10 000 тонн воды будут тщательно искать вспышки света, сигнализирующие о распаде протона. Может быть, этот опыт что-нибудь прояснит.
      Между тем, появились интригующие гипотезы о возможном нарушении закона сохранения лептонного числа. В стандартной модели этот закон сохранения ответственен за то, чтобы нейтрино были безмассовыми, но если этот закон нарушается, то можно ожидать, что у нейтрино есть маленькие массы порядка 10 ?5эВ (т.е. порядка одной миллионной массы электрона). Эта масса намного меньше той, которую могли обнаружить любые лабораторные эксперименты, проведенные до настоящего времени, но тем не менее, ее наличие может приводить к тонкому эффекту, позволяющему нейтрино электронного типа (т.е. принадлежащего к тому же семейству, что и электрон) медленно превращаться в нейтрино других типов. Это могло бы объяснить давнишнюю загадку нехватки тех нейтрино, которые приходят к нам от Солнца, по сравнению с теоретическими ожиданиями . Нейтрино, образующиеся в ядре Солнца, принадлежат в основном к электронному типу, и детекторы, используемые на Земле для регистрации солнечных нейтрино, чувствительны только к нейтрино электронного типа, так что нехватка электронных нейтрино может объясняться тем, что по пути от Солнца часть этих нейтрино превращается в нейтрино других типов. Эксперименты по проверке этой идеи проводятся с помощью разных детекторов в Южной Дакоте, Японии, Италии, Канаде и на Кавказе .
      Если нам повезет, то будут обнаружены свидетельства распада протона или наличия массы у нейтрино. Возможно, что на существующих ускорителях, например на протон-антипротонном коллайдере в Фермилабе или на электрон-позитронном коллайдере в ЦЕРНе, найдут свидетельства существования суперсимметрии. Но все это происходит ужасающе медленно. Заключительные доклады на всех конференциях по физике элементарных частиц за последние десять лет содержали один и тот же список пожеланий для экспериментаторов. Все это страшно далеко от действительно вселявших вдохновение прошлых лет, когда каждый месяц студенты-старшекурсники метались по коридорам физического факультета, рассказывая очередную новость о важном открытии. Только благодаря фундаментальной важности физики элементарных частиц, яркие студенты все еще приходят заниматься областью науки, в которой почти ничего не происходит.
      Мы уверены, что это положение изменится, если будет завершено строительство ССК. Планировалось, что его энергия и интенсивность пучка будут достаточными, чтобы решить вопрос о механизме нарушения электрослабой симметрии, либо в результате открытия одной или более хиггсовских частиц, либо в результате обнаружения следов новых сильных взаимодействий. Если ответом на проблему иерархии является суперсимметрия, то и она может быть обнаружена на ССК. С другой стороны, если новые сильные взаимодействия будут найдены, это сразу повлечет за собой обнаружение на ССК большого количества новых частиц с массами порядка 1 000 ГэВ, которые нужно будет исследовать прежде, чем мы сможем высказать предположение, что же происходит при еще больших энергиях, когда объединяются все силы, включая гравитацию. В любом случае, физика частиц вновь двинется вперед. Битва физиков, занимающихся частицами, за строительство ССК была вызвана убеждением, что только данные, полученные на новом ускорителе, вселят в нас уверенность, что наша работа будет продолжаться.

Глава IX. Контуры окончательной теории

 
…Если
Вы можете глядеть в посев времен
И знаете судьбу зерна любого,
Скажите мне…
 
В. Шекспир. Макбет . Акт I, сцена 3

 
      Вполне возможно, что нас отделяют века от окончательной теории, и она окажется совершенно непохожей на то, что мы способны сегодня вообразить. Но допустим на мгновение, что эта теория совсем близко, за углом. Что мы можем в этом случае сказать о ней на основании уже известных нам знаний?
      Один из разделов современной физики, который, по моему мнению, сохранится неизменным в окончательной теории – квантовая механика. Дело не только в том, что квантовая механика является основой всех наших представлений о материи и разных взаимодействиях и прошла невиданно жесткую экспериментальную проверку; более важно то, что никому не удалось придумать способ хоть как-нибудь изменить квантовую механику, который сохранил бы все ее достоинства, но не привел бы к логическим противоречиям.
      Хотя квантовая механика является как бы сценой, на которой разыгрываются все явления природы, сама по себе эта сцена пуста. Квантовая механика позволяет вообразить бесчисленное множество возможных физических систем: систем, состоящих из частиц любого сорта и взаимодействующих самым разным образом, и даже систем, вообще не состоящих из частиц. История физики в ХХ в. отмечена все возрастающим пониманием того, что актеров в драме, разыгрывающейся на квантовой сцене, определяют принципы симметрии. Современная стандартная модель сильных, электромагнитных и слабых взаимодействий основана на симметриях, а именно на пространственно-временных симметриях специальной теории относительности, которые требуют, чтобы стандартная модель была сформулирована на языке теории полей, и на внутренних симметриях, требующих существования электромагнитного и других полей, переносящих взаимодействия. Тяготение тоже можно понять с помощью принципов симметрии, заложенных в эйнштейновскую общую теорию относительности и утверждающих, что законы природы не должны меняться в результате любых возможных изменений нашего описания событий в пространстве и времени.
      На основании векового опыта общепризнано, что окончательная теория должна покоится на принципах симметрии. Мы ожидаем, что эти симметрии объединят тяготение со слабыми, электромагнитными и сильными взаимодействиями стандартной модели. Но за прошедшие десятилетия мы так и не узнали, каковы эти симметрии, и не сумели построить удовлетворительной квантовой теории гравитации, включающей симметрии общей теории относительности.
      Возможно, мы близки к переменам. За последнее десятилетие бурно развивался радикально новый подход к квантовой теории гравитации, а может быть, и ко всему остальному, – теория струн. Эта теория является первым приемлемым кандидатом на окончательную теорию.
      Корни теории струн восходят к 1968 г., когда теоретики пытались понять, как устроены сильные взаимодействия, не обращаясь к квантовой теории полей, не пользовавшейся тогда популярностью. Молодой теоретик из ЦЕРНа Габриэле Венециано сумел просто угадать формулу, определявшую вероятности рассеяния двух частиц на разные углы при разных энергиях и обладавшую некоторыми общими свойствами, которые вытекали из принципов теории относительности и квантовой механики. Используя известные математические приемы, которые в свое время проходит каждый студент-физик, он сумел построить поразительно простую формулу, удовлетворявшую всем необходимым условиям. Формула Венециано привлекла всеобщее внимание. Вскоре другие теоретики обобщили ее и положили в основу систематической приближенной схемы. В те годы никто и не помышлял о возможном применении этих идей к квантовой теории тяготения. Вся работа мотивировалась надеждой лучше понять сильные ядерные взаимодействия. (До создания правильной теории сильных взаимодействий – квантовой теории поля, известной под названием квантовая хромодинамика, оставалось еще несколько лет.)
      В процессе работы стало ясно , что формула Венециано и ее расширения и обобщения – не просто удачные догадки, а теория физических сущностей нового типа, получивших название релятивистских квантово-механических струн. Конечно, обычные струны состоят из частиц – протонов, нейтронов, электронов. Но новые струны совсем другие: предполагается, что протоны и нейтроны состоят из них. Дело обстояло не так, будто на кого-то сошло вдохновение и он догадался, что материя построена из струн, а затем начал строить соответствующую теорию; на самом деле теория струн была построена до того, как кто-то понял, что это такое.
      Струны можно представить себе как крохотные одномерные разрезы на гладкой ткани пространства. Струны могут быть открытыми, с двумя свободными концами, или замкнутыми, как резиновая лента. Пролетая в пространстве, струны вибрируют. Каждая из струн может находиться в любом из бесконечного числа возможных состояний ( мод) колебаний, похожих на обертоны, возникающие при колебаниях камертона или скрипичной струны. Со временем колебания скрипичной струны затухают, так как энергия этих колебаний переходит в энергию случайного движения атомов, из которых скрипичная струна состоит, т.е. в энергию теплового движения. Напротив, струны, о которых сейчас идет речь, поистине фундаментальные составные части материи, и могут продолжать колебаться бесконечно долго. Они не состоят из атомов или чего-то в этом роде, поэтому энергии их колебаний не во что переходить .
      Предполагается, что струны очень малы, так что если разглядывать их с достаточно больших расстояний, они кажутся точечными частицами. Так как струна может находиться в любой из бесконечно большого числа возможных мод колебаний, она выглядит как частица, которая может принадлежать к одному из бесконечно большого числа возможных сортов, соответствующих определенной моде колебаний струны.
      Первые варианты теории струн были не свободны от трудностей. Вычисления показывали, что среди бесконечно большого числа мод колебаний замкнутой струны существует одна мода, в которой струна выглядит как частица с нулевой массой и спином, вдвое большим, чем у фотона . Напомним, что развитие теории струн началось с попытки Венециано понять сильные ядерные взаимодействия, так что первоначально эта теория рассматривалась как адекватное описание сильного взаимодействия и участвующих в нем частиц. Неизвестна ни одна частица такой массы и с таким спином, принимающая участие в сильных взаимодействиях, более того, мы полагаем, что если бы такая частица существовала, она должна была бы быть давно обнаружена, так что налицо серьезное противоречие с экспериментом.
      Но все дело в том, что частица с нулевой массой и спином, вдвое большим, чем у фотона, существует. Но это не частица, принимающая участие в сильных взаимодействиях, это гравитон, квант гравитационного излучения. Более того, с 60-х гг. было известно, что любая теория, в которой присутствует частица такого спина и такой массы, должна выглядеть более или менее похоже на общую теорию относительности . Та безмассовая частица, которая была теоретически обнаружена в ранних версиях теории струн, отличалась от истинного гравитона только в одном важном пункте – обмен этой новой частицей должен был порождать силы, напоминавшие гравитационные, но только в 10 29раз более сильные.
      Как часто бывает в физике, теоретики, занимавшиеся струнами, нашли правильное решение неправильно поставленной задачи. В начале 80-х гг. теоретики все больше и больше стали приходить к убеждению, что новые безмассовые частицы, возникшие как математическое следствие уравнений струнных теорий, являются не сильновзаимодействующим аналогом гравитона, а самым настоящим гравитоном . Чтобы при этом гравитационное взаимодействие имело правильную интенсивность, нужно было увеличить коэффициент натяжения струн в основных уравнениях теории до такой степени, чтобы разность энергий между наинизшим и следующим по величине энергетическими состояниями струны составляла не пустячную величину порядка нескольких сот миллионов эВ, характерную для ядерных явлений, а величину порядка планковской энергии 10 19ГэВ, когда гравитационное взаимодействие становится столь же сильным как и другие взаимодействия. Эта энергия так велика, что все частицы стандартной модели – кварки, глюоны, фотоны – должны быть сопоставлены с наинизшими модами колебаний струны, в противном случае, требовалось бы так много энергии на то, чтобы их породить, что мы никогда не смогли бы эти частицы обнаружить.
      С этой точки зрения квантовая теория поля типа стандартной модели представляет собой низкоэнергетическое приближение к фундаментальной теории, которая является совсем не теорией полей, а теорией струн. Сейчас мы полагаем, что квантовые теории полей работают столь успешно при энергиях, доступных современным ускорителям, совсем не потому, что окончательное описание природы возможно на языке квантовой теории поля, а потому, что любаятеория, удовлетворяющая требованиям квантовой механики и специальной теории относительности, при достаточно малых энергиях выглядит как квантовая теория поля. Мы все больше и больше воспринимаем стандартную модель как эффективную квантовую теорию, причем прилагательное «эффективная» служит для напоминания, что все такие теории суть лишь низкоэнергетические приближения к совершенно другой теории, возможно, теории струн. Стандартная модель – сердцевина современной физики, но такое изменение отношения к квантовой теории поля может означать начало новой эры постмодерна.
      Так как теории струн включают в себя гравитоны и еще кучу других частиц, впервые возникает основа для построения возможной окончательной теории. Действительно, поскольку представляется, что наличие гравитона – неизбежное свойство любой теории струн, можно сказать, что такая теория объясняет существование гравитации. Эдвард Виттен, ставший позднее ведущим специалистом по теории струн, узнал об этой стороне теории в 1982 г. из обзорной статьи теоретика Джона Шварца. Он вспоминает, что эта мысль стала «величайшим интеллектуальным потрясением в моей жизни» .

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19