Современная электронная библиотека ModernLib.Net

Почему небо темное. Как устроена Вселенная

ModernLib.Net / Владимир Решетников / Почему небо темное. Как устроена Вселенная - Чтение (Ознакомительный отрывок) (стр. 3)
Автор: Владимир Решетников
Жанр:

 

 


Однако Шезо не был первым человеком, правильно оценившим масштаб межзвездных расстояний. Как оказалось, это было сделано Исааком Ньютоном в «De mundi systemate» («Система мира») – дополнении к «Началам», написанном еще в 1680-х годах и опубликованном в 1728 году, уже после его смерти. В этой работе Ньютон методом Грегори нашел, что расстояние до звезд первой величины примерно в 100 000 раз превышает расстояние от Сатурна до Солнца, что составляет ~ 1 000 000 астрономических единиц (4.8 пк)[7].

Еще один интересный результат небольшой работы Шезо о фотометрическом парадоксе – корректная математическая оценка доступной наблюдениям области Вселенной. Если предположить, что все звезды подобны Солнцу и что они равномерно распределены в пространстве со средним взаимным расстоянием 4 световых года, то в пределах сферы радиусом 3x1015 световых лет звезды перекроют своими дисками всю небесную сферу. Свет от более далеких звезд будет экранирован дисками более близких объектов и внешняя часть Вселенной останется ненаблюдаемой.

Британский космолог Эдвард Харрисон считает, что, возможно, именно огромность, несоизмеримость этих масштабов могла подтолкнуть Шезо к идее межзвездного поглощения – ведь даже ничтожная непрозрачность межзвездной среды на столь больших расстояниях способна полностью скрыть далекие объекты и, тем самым, сделать ночное небо темным.

Следующий исследователь, внесший вклад в исследование парадокса, названного позднее его именем, – это немецкий врач и астроном-любитель Генрих Ольберс. Ольберс был дипломированным медиком, но, горячо увлекаясь астрономией, он в течение многих лет сочетал оба занятия. Днем он был солидным бременским врачом, а ночью проводил наблюдения в частной обсерватории на верхнем этаже собственного дома. Лишь после смерти дочери и второй жены он оставил врачебную практику и с 1820 года полностью посвятил себя астрономии. В биографическом очерке, включенном в книгу С. Ньюкомба и Р. Энгельмана «Астрономия в общепонятном изложении» (опубликована на русском языке в 1896 году), об Ольберсе было написано так: «Едва ли можно назвать другого любителя, которому астрономия была бы так много обязана, как Ольберсу; и мало было специалистов по астрономии, которые обладали столь обширными познаниями в ней, как этот любитель».

Основные результаты Ольберса посвящены наблюдениям комет (он открыл их 7 штук) и расчетам их орбит (им разработан метод определения орбит комет по трем наблюдениям). В 1802 году Ольберс переоткрыл первую малую планету (Цереру)[8], которая вскоре после ее открытия в 1801 году итальянским астрономом Пиацци была потеряна. В том же 1802 году он открыл вторую малую планету (Палладу), а в 1807 – четвертую (Весту).

В 1823 году, почти через 80 лет после работы Шезо, Генрих Ольберс опубликовал статью «О прозрачности пространства». В своей статье Ольберс анализирует фотометрический парадокс – более пространно и в более качественном стиле по сравнению с кратким изложением Шезо – и предполагает, что учет поглощения света далеких звезд в межзвездном пространстве может решить эту проблему.

Изложение Ольберса в целом оригинально и вводит в обсуждение парадокса несколько новых идей. Например, Ольберс допускает, что звезды не обязательно должны быть однородно распределены в пространстве, а могут группироваться в системы, подобные Млечному Пути, то есть в галактики. Такое скучивание не избавляет от парадокса, поскольку любой луч зрения все равно рано или поздно должен упереться в диск какой-либо звезды. Ольберс считает, что полная прозрачность межзвездного пространства «в высокой степени невероятна» и обосновывает существование поглощающей среды тем, что вещество кометных хвостов рассеивается, пополняя окружающее пространство, а также существованием зодиакального света. (Строго говоря, это говорит лишь о межпланетной среде, но отсюда уже один шаг до признания существования и межзвездного вещества.)

Любопытен «научно-фантастический» пассаж Ольберса о том, что даже в случае, если бы вся небесная сфера сияла как поверхность Солнца, можно было бы вообразить живые организмы, приспособившиеся и к таким экстремальным условиям. Он отмечает, что астрономия у разумных существ такой планеты находилась бы в примитивном состоянии – обитателям ничего не было бы известно о звездах, о существовании Солнца можно было бы узнать лишь по наблюдениям его пятен, а Луна и планеты обнаруживались бы лишь как темные пятна на сверкающем фоне. (Соображения Ольберса отчасти перекликаются с высказанными в п. 1.1 этой книги.)

В своей статье Ольберс цитирует Галлея, но ни разу не упоминает работу Шезо. Знал ли он о ней, и повлияла ли она как-нибудь на его собственную работу? Вопрос не праздный, поскольку подход Ольберса и предложенное им решение фотометрического парадокса в целом похожи на то, что сделал Шезо задолго до него. Кроме того, оказалось, что в библиотеке Ольберса была книга Шезо 1744 года, посвященная знаменитой шестихвостой комете, в приложении к которой Шезо описал свое решение фотометрического парадокса. Более того, Ольберс, несомненно, читал эту книгу – американский историк астрономии Стенли Яки обнаружил, что в записных книжках, относящихся к 1782–96 годам, Ольберс тщательно законспектировал часть книги Шезо, в которой тот описывает предложенный им метод определения кометных орбит.

Так что же произошло? Яки, да и не только он, считает, что речь не может идти о плагиате, поскольку это в сильнейшей степени противоречит тому, что известно об Ольберсе, о его характере и научных работах. Скорее всего, к 1823 году, когда Ольберс написал свою статью, он забыл или полузабыл о короткой заметке Шезо, которую он, возможно, читал тридцать или сорок лет назад в поисках информации о столь любимых им кометах. Как полагает Эдвард Харрисон, люди забывают об источниках своих идей гораздо чаще, чем обычно считают.

Какова дальнейшая судьба идеи Шезо и Ольберса о межзвездном поглощении как о возможном решении фотометрического парадокса? Идея эта, конечно, не верна, поскольку в заполненной звездами безграничной и вечной Вселенной само поглощающее вещество (межзвездная пыль и газ) начнет нагреваться до тех пор, пока не установится тепловое равновесие между поглощающей средой и излучением звезд, а тогда среда станет излучать столько же, сколько поглотит. Первым это понял, по-видимому, английский астроном Джон Гершель (1792–1871), знаменитый сын еще более знаменитого отца – Вильяма Гершеля (1738–1822).

В 1848 году Джон Гершель опубликовал рецензию на недавно появившийся первый том «Космоса» Александра фон Гумбольдта. Гершель упоминает Ольберса и идею поглощения света, а затем пишет, что, действительно, свет легко поглощается, однако поглощенный свет нагревает поглощающую материю и она должна начать излучать, отдавая через излучение столько же энергии, сколько поглотила. Гершель использовал немного другие слова, но суть его комментария именно в этом. Очень примечательно, что это было написано тогда, когда недавно открытый закон сохранения энергии еще не стал широко известным и общепринятым.

Джон Гершель предложил и свой вариант решения фотометрического парадокса. Будучи наблюдателем, он был уверен, что в некоторых направлениях на небе он и в самом деле видит пустое пространство за пределами нашей звездной системы. С другой стороны, он имел хорошую математическую подготовку и догадывался, что можно придумать такое пространственное распределение объектов, что даже при бесконечном числе звезд ночное небо будет оставаться темным: «…легко представить устройство вселенной, которая будет оставаться в точном смысле слова бесконечной, и в которой произвольное количество лучей зрения не будут пересекаться со звездами». Гершель коротко описал такое устройство – звезды распределены самоподобным образом на всех уровнях, – то, что позднее стали называть иерархическим или фрактальным распределением. Идея иерархического строения Вселенной позднее развивалась многими исследователями – например, Ричардом Проктором, Карлом Шарлье, Фурнье д’Альбе. Эта идея, действительна, способна решить фотометрический парадокс, однако она противоречит наблюдаемой на больших масштабах однородности нашей Вселенной (см. следующую главу).

1.6. Динамическая Вселенная Эдгара По

Наука! ты – дитя Седых Времен!

Меняя все вниманьем глаз прозрачных,

Зачем тревожишь ты поэта сон,

О коршун! крылья чьи – взмах истин мрачных!

Эдгар По

Появление имени знаменитого поэта, писателя, классика и родоначальника сразу нескольких жанров литературы, может показаться странным в книге по астрономии. Однако что не было странным в жизни этого человека?

Эдгар Аллан По рано остался без родителей и воспитывался в доме богатого коммерсанта из Ричмонда Джона Аллана. Вместе с приемной семьей Эдгар По пять лет прожил в Англии, где учился в дорогом пансионе в Лондоне. После возвращения Алланов в США Эдгар закончил колледж в Ричмонде, в 1826 году поступил в недавно открытый Университет штата Вирджиния. Проучился в университете лишь год, вынужден был его бросить, записался добровольцем в армию, пытался закончить элитную военную академию в Вест-Пойнте, но был отчислен. Дальше – работа в нескольких журналах, богемная жизнь, личные и семейные драмы, нервное перенапряжение, болезни, запои, и на фоне всего этого – многочисленные стихи, рассказы, новеллы… И смерть в 40 лет в унизительной бедности и горячечном бреду. Биография, разительнейшим образом отличающаяся от жизни остальных героев этой книги.



Рис. 12. Дагерротип Эдгара Аллана По (1809–1849), изготовленный незадолго до смерти поэта.


Парадоксально, что именно этот парадоксальный человек предложил первое правильное, хотя и качественное, решение загадки темноты ночного неба. Даже более – Эдгара По можно назвать, пусть и с некоторой натяжкой, одним из идейных предшественников современной космологии в целом. Это не было случайностью – он очень интересовался наукой и, в особенности, астрономией, изучал книги классиков физики и астрономии (например, Ньютона, Лапласа, Вильяма и Джона Гершелей, Гумбольдта). Когда Эдгару было 16 лет, опекун подарил ему маленький телескоп и Эдгар По наблюдал в него Луну и звезды.

Рассказ «Необыкновенное приключение некоего Ганса Пфааля» (опубликован в 1835 году) по признанию самого Эдгара По был вдохновлен «Курсом астрономии» Джона Гершеля, американское издание которого вышло лишь годом ранее. Открываем это рассказ и находим в нем массу научной информации – параметры лунной орбиты, детальное описание вида Земли из космоса, сведения о кометах и зодиакальном свете, ссылки на великих ученых прошлого. Эдгар По так старался убедить читателей в подлинности фантастического путешествия на воздушном шаре на Луну, что превратил свой рассказ почти в научно-популярный астрономический очерк.

3 февраля 1848 года Эдгар По выступил в Общественной библиотеке Нью-Йорка с лекцией «О космогонии Вселенной». Аншлага не было – на лекцию пришло около 60 слушателей, большинству из которых лекция показалась скучной, затянутой и малопонятной. Затем По переработал лекцию и в том же году тиражом в 500 экземпляров выпустил ее расширенную версию под названием «Эврика. Поэма в прозе» (По хотел напечатать 50 000 экземпляров, издатель уменьшил тираж в сто раз). Эдгар По считал, что этой поэмой он «революционизирует мир физических и метафизических наук». Революции не произошло – «Эврика» на многие годы оказалась забытой и на развитие науки она уж точно никакого влияния не оказала. По словам Эдварда Харрисона, «ее наука была слишком метафизической, а ее метафизика – слишком научной».

Среди немногочисленных читателей «Эврики», высоко оценивших ее содержание, были в основном поэты – например, Шарль Бодлер (автор французского перевода), Поль Валери, Константин Бальмонт, переведший поэму на русский язык. Дочь знаменитого французского поэта Теофиля Готье – Юдит Готье – в 1864 году (ей было тогда только 15 лет!) написала о только что вышедшей на французском языке «Эврике»: «Было бы ошибочно думать, что Эдгар По, создавая «Эврику», ставил своей целью только написать поэму; он был абсолютно убежден, что открыл великий секрет Вселенной, и он использовал всю мощь своего таланта для развития своей идеи».

Рассмотрим нарисованную в «Эврике» картину Вселенной (все последующие цитаты взяты из перевода К. Бальмонта). Согласно По, пространство бесконечно, а «звездная Вселенная» или «Вселенная звезд», то есть заполненная материей часть бесконечного пространства, конечна во времени и в пространстве. В этой бесконечной «метавселенной» наша Вселенная не единственна —»существует некая беспредельная последовательность Вселенных, более или менее подобных той, о которой мы имеем осведомленность…» Каждая из этих Вселенных имеет свои собственные законы, и эти Вселенные никак друг с другом не взаимодействуют – «не имея доли в нашем происхождении, они не имеют доли в наших законах. Ни они не притягивают нас, ни мы их… Между ними и нами… нет влияний взаимных…» (Нарисованная Эдгаром По картина очень напоминает современную концепцию Мультивселенной (Multiverse) – см. следующую главу.)

Примечания

1

Например, «Человек раздвоен снизу, а не сверху, – для того, что две опоры надежнее одной» (Козьма Прутков).

2

Когда впервые была осознана эта загадка, мир считался состоящим из звезд. Сейчас мы знаем, что основными «кирпичиками» Вселенной являются не звезды, а галактики. Однако для формулировки парадокса это не важно, поскольку галактики состоят из звезд.

3

Наглядным подтверждением справедливости принципа Берри является то, что принцип Арнольда по сути дублирует сформулированный в 1980 году так называемый закон эпонимии Стиглера – ни одно открытие не носит имя того ученого, который его сделал. Сам Стиглер при этом ссылается на то, что формулировка этого закона принадлежит великому социологу Роберту Мертону.

4

Кривая блеска – изменение видимой звездной величины небесного объекта со временем, а видимая звездная величина – это безразмерная характеристика освещенности (п. 1.2). Для звезд понятия звездная величина, блеск и яркость часто используются как синонимы.

5

Параллакс – изменение направления на светило при наблюдениях из разных точек (видимое изменение положения небесного светила вследствие перемещения наблюдателя). Суточный параллакс – разница в направлениях на светило из центра Земли и из точки на поверхности Земли. Другими словами, это угол, под которым со светила виден радиус Земли.

6

1 пк (парсек) – это расстояние, с которого средний радиус орбиты Земли виден под углом в 1 угловую секунду. Парсек равен 3.26 светового года или примерно 3x1018 см. В окрестности Солнца характерные расстояния между звездами близки к 1 пк.

7

Ньютон принял, что Сатурн отражает 1/4 падающего излучения, что примерно в два раза меньше реального альбедо планеты. Использование правильного альбедо несколько уменьшило бы оценку расстояния и сделало бы ее еще более реалистичной.

8

С 2006 года Церера классифицируется как «карликовая планета».

Конец бесплатного ознакомительного фрагмента.

  • Страницы:
    1, 2, 3