Современная электронная библиотека ModernLib.Net

Время вспять

ModernLib.Net / Физика и астрономия / Абрагам Анатоль / Время вспять - Чтение (стр. 20)
Автор: Абрагам Анатоль
Жанр: Физика и астрономия

 

 


Он занимает кафедру физики конденсированного состояния, но он — завоеватель, который не привык довольствоваться достигнутым. Трудно найти в этой области предмет, которого бы он за последние тридцать с лишним лет не затронул и не обновил, спеша "явиться, прогреметь, блеснуть, пленить и улететь", оставив его ученикам, теоретикам и экспериментаторам, которые углубляют проведенную им борозду. Один американский физик написал, что сегодня де Жен — наше лучшее приближение к Ландау (без колючек и с добавлением численных данных, прибавил бы я). Прозрачность лекций де Жена порой обманчива: его "интуитивные" приближения являются часто плодом утонченных и глубоких размышлений и гораздо менее очевидны для слушателей, чем он считал. Скажу еще, что этот неутомимый труженик давно отрекся от всех обязанностей не первой необходимости; одна из них — присутствие на ассамблеях Коллежа. Клод Коэн-Тануджи — воспитанник лаборатории Бросселя — Кас-тлера, откуда вышло после войны много талантливых французских физиков. Весьма парадоксально, что составление доклада о его кафедре доставило мне больше работы, чем о кафедре де Жена несмотря на то, что предмет, предложенный мною, "Атомная и молекулярная физика", был тем же самым, что и у его предшественника Перрена. Трудность заключалась в том, что лаборатория Перрена превратилась под конец в своего рода туманность, главным созвездием которой стала физика высоких энергий (как в лаборатории Лепренс-Ренге), а атомная и молекулярная физика были в упадке. Надо было показать, что "новая" атомная и молекулярная физика, родившаяся в лаборатории Кастлера и Бросселя и блестяще усовершенствованная самим Коэн-Тануджи, не имела ничего общего с ее дряхлой предшественницей, которая медленно угасала в лаборатории Перрена. Коэн-Тануджи не только блестящий исследователь, чьи работы об атоме, "одетом" с помощью излучения, принесли ему международную известность, он еще и замечательный преподаватель. В отличие от де Жена, он ведет своих слушателей к цели по столбовой дороге, где они не рискуют споткнуться о кочку или завязнуть в болоте блестящей, но порой обманчивой простоты. Менее близок я к Филипу Нозьеру, потому что в течение многих лет он был профессором в Гренобле, где и теперь находится центр тяжести его научной деятельности. Я пытался привлечь его в Коллеж на десять лет раньше, но не нашел достаточной поддержки у литературных", так что дело тогда даже не дошло до выборов. Недавно он был награжден премией Вольфа, которая очень ценится среди физиков. Марсель Фруасар заменил Лепренс-Ренге в 1973 году. Я искренно убежден, что Фруасар был гениален, — слово, которое я легко не употребляю, — пожалуй, гениальнее, чем остальные трое (постольку, поскольку такое можно определить количественно). В отделе теоретической физики Сакле, где исключительно одаренных было немало, он, бесспорно, стоял выше всех. Начиная с его ранних публикаций, все видели в нем преемника Дайсона или Швингера; но теперь, кажется, он потерял интерес к такого рода деятельности. Мне говорят, что он довольствуется компетентным управлением обширной лабораторией, которую ему оставил Лепренс-Ренге. Чтобы дополнить описание Коллежа, хочу упомянуть о тех четырех администраторах, которые управляли им в мое время. Первый, кого я встретил по приходе, был, как я сказал раньше, Марсель Батальон, специалист по испанской цивилизации, администратор с 1955 по 1965 год. Он был очень красив; его благородные черты, белоснежная шевелюра, сдержанная любезность, его точная и медленная речь — все в нем напоминало испанского гранда. Он не был лишен некоторого сухого юмора, о чем свидетельствует следующий пример. При голосовании (втором), где философ Жан Гиполит (Jean Hyppolite) был единственным кандидатом, в своей защитной речи по его кандидатуре докладчик говорил гораздо больше о Гегеле, чем о Гиполите, что толкнуло меня опустить в выборную урну бюллетень с именем Гегеля. Провозглашая результаты голосования, Батальон без улыбки отозвался на имя Гегеля следующим замечанием: "Я не был письменно уведомлен в законный срок личностью, чье имя обозначено на этом бюллетене, о намерении быть кандидатом, и я должен объявить бюллетень с этим именем недействительным".Испанским грандом он был и в своих отношениях с безликим божеством, которое заведовало нашими судьбами, министерством. На одной из ассамблей он выразил удивление, что письменная просьба одной из лабораторий Коллежа об увеличении стипендии, которую он переправил в министерство, оставалась без ответа целых два месяца. У "научных", которые прекрасно знали, что для того, чтобы вырвать фунт плоти из когтей министерства, надо было не только писать, но и звонить по телефону, и ходить туда, да не раз, подобная невинность могла вызвать только улыбку умиления. Беспомощность "литераторов" перед требованиями "научных" принимала разные формы. Так, эндокринолог Робер Курье (Robert Courrier) рассказывал мне, как много лет тому назад тогдашний администратор, специалист по средневековой цивилизации, так реагировал на его заказ на двадцать четыре термометра: "Но, дорогой коллега, даже если вы повесите по два в каждой комнате, все равно будет вдвое больше, чем нужно".Преемник Батальона с 1966 по 1974 год, эмбриолог Этьен Вольф (Etienne Wolf) не сделал бы подобного замечания. В своей лаборатории он был принцем тератологии17, т. е. создателем чудовищ и химер в животном мире. На первый взгляд он был резок и авторитарен, но много выигрывал при близком знакомстве, так как за его суровым обликом скрывались застенчивость и доброта. Ему не повезло, так как он оказался на посту во время студенческих беспорядков 1968 года, и я думаю, что они причинили ему много огорчений. Я также думаю, что Коллежу повезло, что наши левые, псевдореволюционеры, которые хорошо знали Сорбонну, где они выкидывали свои штучки, даже не подозревали о существовании Коллежа. С 1974 по 1980 год Вольфа заменил умный и добродушный Алан Горо (Alain Horeau), специалист по химии гормонов, не имевший равных в решении щекотливых задач, которые возникали между его коллегами, или между профессорами и их сотрудниками^ или между министерством и профсоюзами. Однажды он мне рассказал, что его лаборатория работает над усовершенствованием противозачаточных средств, после чего спросил: "Как вы думаете, сколько у меня детей?" — "Шесть," — ответил я. "Нет, двенадцать." Я не решился заметить, что сапожник всегда без сапог. С 1980 года и по сей день (1989) наш администратор — профессор Ив Лапорт (Yves Laporte), выдающийся нейрофизиолог. Высокий, изящный, со строгими чертами лица, которые иногда освещаются очаровательной улыбкой, он постоянно печется об улучшении условий труда членов Коллежа; должен с благодарностью заметить, в том числе и почетных. Особенно я ему благодарен за возможность располагать компьютером, при помощи которого были написаны французская и английская версии этой книги, а также эти строки. Потому ли что он появился как на этот свет, так и в Коллеже после меня, а не до, как его предшественники, потому ли что разделяет мою любовь к Шекспиру или по какой-нибудь другой причине, но во время наших ассамблей под его председательством я всегда испытываю по отношению к нему чувство взаимопонимания, которого не было по отношению к другим. В начале этой главы я сказал, что был кандидатом на кафедру в Коллеже, потому что мне хотелось преподавать. Это, конечно,"Тератология — наука, изучающая уродства и пороки развития у растений, животных и человека. — Примеч. ред. правда, но не вся правда. Я говорил, что КАЭ — учреждение с авторитарной структурой. Может наступить день, думал я, когда я вынужден буду сказать его хозяевам "нет". Коллеж будет тогда для меня крепостью, из которой я скажу это "нет". Так оно и вышло. Двенадцать лет спустя …, но об этом позже. До сих пор я ничего не сказал о своих лекциях. Они тесно связаны с работами моей лаборатории и, конечно, еще больше с работами других лабораторий. Среди физиков, как полагаю и в других науках, есть универсалы, которые знают мало, но обо всем, и специалисты, которые знают все, но мало о чем. (Как сказал бессмертный Козьма Прутков, "специалист подобен флюсу; полнота его одностороння".) Есть еще Ганс Бете, который знает почти все почти обо всем, и четвертая категория, которую не нужно описывать. Я предпочитаю говорить о физике "горизонтальном" или "вертикальном", как бы выглядел он на графике, где предметы отложены по оси абсцисс, а знания по оси ординат. За исключением (в некоторой степени) самого ядерного магнетизма, я считаю себя "горизонтальным".Я вижу тому четыре или пять причин. Во-первых, как я уже говорил не раз, я — "поздно начавший" (late beginner) в течение многих лет вынужден был заниматься самообразованием, т. е. читать книги, написанные на разные темы другими, вместо того, чтобы самому писать статьи на одну тему. Во-вторых, в КАЭ я заведовал все более и более обширными научными отделами. И мне казалось немыслимым числиться начальником какого-нибудь физика, не понимая предмета его занятий, что опять вело к самообразованию. В некоторых счастливых случаях его физика сливалась с моей. К этому я еще вернусь. В-третьих, сыграл не малую роль мой двадцатипятилетний стаж профессора Коллежа. По уставу в лекциях профессор должен изложить "результаты своих исследований и открытий, сделанных им за предыдущий год". Что касается открытий, то и в урожайные годы двух лекций было бы более чем достаточно, а что касается исследований, проведенных в моей лаборатории, то меня не привлекало излагать слушателям, не столь уж многочисленным и, кроме того, состоящим в значительной части из моих сотрудников с кафедры, то, что я уже подробно обсудил с ними в лаборатории. Приходилось читать лекции об ином, что было не так просто. Главное различие курсов в университете и в Коллеже заключается в том, что в университете слушатели меняются каждый год, а предмет, если и изменяется, как у лучших профессоров, то весьма мало, в то время как в Коллеже наоборот — публика мало меняется, а значит, должен меняться курс. У меня был накоплен большой материал о ядерном магнетизме и в первые годы в Коллеже я намного превышал норму устава, которая для кафедр с лабораторией, как моя, равна девяти лекциям и девяти семинарам под руководством профессора. (Много лет тому назад администратору пришлось напомнить одному профессору-"литератору", что "руководство семинаром" предполагает присутствие профессора на семинаре.) Профессору университета, который, может быть, считает, что это очень легкая нагрузка, я посоветовал бы попробовать в течение двадцати пяти лет читать каждый год новый курс искушенной и критически настроенной публике. В первый год, полный юношеского азарта (ведь мне было всего сорок пять лет), я прочел двадцать семь лекций и провел пятнадцать семинаров, но постепенно угомонился и под конец приблизился к норме устава и ко всем моим коллегам. Надо было искать новые темы, т. е. новые для меня. С теперешней специализацией физики не ходят на лекции, предмет которых даже слегка отдален от их собственных интересов. Когда профессор Коллежа берется излагать тему, которая не совпадает с его собственными исследованиями, перед ним возникает щекотливая проблема: желательно, чтобы слушатели интересовались этой темой и даже сами работали бы над ней, потому что иначе они не придут на лекции; но нежелательно, чтобы они знали предмет гораздо лучше профессора, который тогда ежеминутно рискует потерять свое лицо. Для новичка-профессора единственной возможностью заинтересовать слушателей-специалистов является тогда оригинальное изложение, к которому специалисты не привыкли. Иногда мне это удавалось. Конечно, очень важно, чтобы эта тема интересовала самого профессора. Из моих двадцати трех курсов не более половины были посвящены самому ядерному магнетизму, хотя все так или иначе имели дело со спинами. Двадцать три курса, а не двадцать пять, потому что профессор Коллежа может при желании воспользоваться "саббатическим" отпуском (впервые так названным в американских университетах, где он дается каждый седьмой год), т. е. освободиться на год от обязанности преподавать, обыкновенно, чтобы путешествовать, и я дважды брал такой отпуск. Иногда выражается мнение, что для Коллежа обязанность преподавать — пережиток прошлого, который отнимает ^драгоценное время у научной работы, и который надо упразднить, как это делается в некоторых выдающихся исследовательских учреждениях. Я считал бы это опасной ошибкой: обязанность преподавать каждый год курс, способный заинтересовать научных работников, младших или старших, — лучшее противоядие от окостенения или просто безделья. Так легко ничего не делать тому, кто поднялся на известный уровень научной иерархии и "руководит" работой других! Минута правды наступает тогда, когда стоишь перед слушателями и замечаешь зевающие рты или отсутствующие взгляды, и нет обиды хуже этой. Все предыдущее сказано для того, чтобы объяснить, боюсь слишком длинно, почему мои лекции толкали меня к "горизонтальности".'Четвертой причиной является сама природа ядерного магнетизма, который сам по себе или через его применения соприкасается с невероятным числом других предметов: всей физикой конденсированного состояния, статистической механикой, физикой ядерной и элементарных частиц, сверхнизких температур, химией, биологией, а сегодня, благодаря ЯМР-изображению, с клинической медициной. Все это превращает специалиста по ядерному магнетизму в человека эпохи Возрождения, как я напыщенно назвал его в своей вступительной лекции.*Поляризованные пучки и мишениСамым наглядным примером симбиоза моей и чужой физики является проблема поляризованных пучков и мишеней. Я работал над этой темой в близком сотрудничестве с моим "подчиненным", физиком-ядерщиком Жаком Тирьоном, а позже с ЦЕРН'ом. В чем там дело? Как я уже объяснял, в ядерной физике обстреливают мишень пучком частиц из ускорителя и изучают столкновение между частицей пучка и частицей мишени. Игроки в бильярд знают, что, если придать шару кием вращение (по-английски спин), это изменит результат столкновения с другим шаром. Большое число атомных ядер, в том числе протоны и дейтроны, имеют внутренний спин, что аналогично вращению бильярдного шара вокруг оси, и результат столкновения одной из этих частиц с мишенью будет зависеть от ориентации спина по отношению к направлению пучка. Обыкновенно пучки частиц не поляризованы, т. е. направления их спинов беспорядочны, и в столкновении пучка с мишенью наблюдается усреднение по всем ориентациям спинов. Из-за этого теряется информация. Желательно оперировать с поляризованными пучками, где все спины имеют одну и ту же определенную ориентацию. В начале шестидесятых годов я придумал оригинальный метод получения поляризованных пучков, основанный на использовании радиочастотных полей с учетом моей старой знакомой — сверхтонкой структуры атома. Эта структура, обусловленная связью между ядерным магнитным моментом и гораздо большим электронным, действует как рукоятка, которой можно перевернуть ядерный момент посредством электронного. Это если не тот же метод, то, по крайней мере, та же идея, как ДЯП солид-эффектом, где электронная поляризация передается ядерным спинам. В результате нашего сотрудничества ребята Тирьона успешно построили источник для поляризованных пучков. Но чтобы успешно употреблять наш поляризованный источник для ядерных реакций, его надо было сочетать с другим устройством — поляризованной мишенью. В бильярдном столкновении довольно легко придать кием шару спин (в английском смысле слова), но не ясно, как обеспечить тем же спином шар, в который метишь. (Правила бильярдной игры об этом умалчивают.) В нашей лаборатории мы называли эту вторую, более трудную часть проблемы "принцессой Маргарет", следуя анекдоту, рассказанному нашим другом Арни. Принципом поляризованной мишени мы овладели несколько лет тому назад: это был "солид-эффект". Оставалось решить нелегкую техническую задачу построения мишени операционной, как говорят военные. Эта мишень пропускала протоны малой энергии (от 10 до 20 МэВ) и, значит, была очень тонкой (толщиной 0,1 мм), была окружена радиочастотной катушкой для измерения протонной поляризации, находилась внутри миллиметрового резонатора и была охлаждена до 1 К в криостате, введенном в зазор магнита, который создавал поле в 2 Тесла. Без помощи нашего одаренного инженера-криогенщика Пьера Рубо, бывшего морского офицера, и его искусного помощника Кустама не знаю, справились ли бы мы с этой задачей. Наконец, мы добились успеха, и в 1962 году физики Тирьона осуществили первый в мире эксперимент по рассеянию поляризованного протонного пучка на поляризованной протонной мишени, построенный по моему методу. Желая найти клиентов для наших "товаров", я предлагал нашу технику нескольким французским ядерщикам. Все казались заинтересованными, но все придумывали какие-то сложные хитроумные эксперименты, которые было бы трудно осуществить даже с обыкновенной мишенью без осложнений, связанных с поляризацией. Их поведение напоминало мне следующий анекдот. Акробат ходит по натянутому канату на высоте в двадцать метров, на плечах у него сидит ребенок, а на голове зажженная керосиновая лампа; в руках у него скрипка, на которой он играет Крейцерову сонату (рояль надо полагать, остается внизу). Критически настроенный зритель замечает: "Да, это не Ойстрах".От ядерной физики низких энергий мы перешли к мишеням для физики высоких энергий, где мы близко сотрудничали с физиками ЦЕРН'а. Трудности здесь были диаметрально противоположными. Вместо очень тонких мишеней и всех трудностей, связанных с этим, наши новые клиенты желали располагать как можно большими мишенями. Они готовы были "купить" мишень объемом до литра, т. е. в миллион раз большим, чем у нашего прежнего творенья. В некоторых отношениях это было даже легче при наличии надлежащей аппаратуры, электронной, криогенной, магнитной и механической, из которой немалую часть предоставил нам ЦЕРН. Зато усложнением являлась необходимость увеличить в мишени долю "свободных" протонов, т. е. не связанных в ядрах других элементов. Наконец, требовалось увеличение скорости роста поляризации и скорости ее переворачивания. Это привело к поискам подходящих парамагнитных примесей с очень быстрой релаксацией, позволяющей им успешно справляться с обязанностями "царя Соломона".В то же время развивалась и теория динамической поляризации. Оказалось, что ширина линий ЭПР парамагнитных примесей была слишком велика для применения упрощенной модели солид-эффекта, и пришлось вырабатывать более утонченные теории. Пионерами этой теории, слишком сложной, чтобы ее здесь объяснять, явились советские физики Провоторов и Буишвили, а позже многие другие (в частности, и на Западе), в том числе мои сотрудники Соломон и Гольдман, да и я сам. Кроме того, есть еще и другие эффекты, о которых я только упоминаю, как, например, "узкое горло", фононное, хорошо знакомое в ЭПР релаксации, которое еще сильнее усложняет теорию. В обширной монографии, написанной с Гольдманом и вышедшей в 1982 году (есть русский перевод), мы дали подробное и, признаюсь, довольно неудобоваримое изложение теории ДЯП.*В течение пятнадцати лет физики высоких энергий, возглавляемые Оуэном Чемберленом, который был награжден Нобелевской премией в 1959 году за открытие антипротона, проявляли большой интерес к поляризованным мишеням. Даже Карло Руббиа, получивший Нобелевскую в 1984 году за открытие W и Z бозонов, сотрудничал с нами некоторое время. Завязалось активное сотрудничество между физиками низких температур и резонанса, с одной стороны, и физиками высоких энергий, с другой. Все разделяло их и, прежде всего, гигантский скачок энергии в Ю15 раз. Несмотря на это различие, было организовано немало совместных конференций в Сакле, Беркли, Чикаго, Харуэлле, Брукхейвене, Женеве, Лозанне и т. д. На этих конференциях для нас, "резонаторов", проблемным был вопрос: "как поляризованные мишени осуществить", для них, физиков высоких энергий, проблемным был вопрос "зачем поляризованные мишени строить". Это было столкновение двух культур, столкновение легкой и тяжелой науки. Чемберлен не раз высказывал мнение, что поляризованным мишеням суждено сделаться для физики высоких энергий орудием, подобным пузырьковой камере, изобретение которой принесло Дональду Глазеру Нобелевскую в 1960 году. Слыша такие речи и видя глубокий интерес физиков высоких энергий к поляризованным мишеням — изобретению, по-моему, гораздо более остроумному и изощренному, чем пузырьковая камера, — возбуждали у физиков высоких энергий, так ли уж удивительно, что и я порой мечтал о поездке в Стокгольм. В своих мечтах я охотно делил награду с моим соперником и хорошим другом профессором Карсоном Дже-фризом (Carson Jeffries) из Беркли, который другим путем тоже пришел к идее и реализации поляризованных мишеней. Более того, в этих несовершившихся мечтах я тайно рассчитывал на хорошо известное искусство физиков Беркли проталкивать своих, а значит, и Джефриза, на Нобелевскую, которую тогда уже нельзя было бы не разделить между нами.(Здесь я открою маленькую скобку: когда ЦЕРН начал интересоваться поляризованными мишенями, там составилась партия обожателей Америки, которые ратовали за то, чтобы выписать поляризованные мишени из Беркли, вместо того чтобы пользоваться нашими. В докладе в ЦЕРН'е, где я агитировал за наши мишени, я рассказал следующий анекдот. Во время войны с японцами некоторые американские войска были переведены в Австралию. Невеста одного из солдат, сомневаясь в верности возлюбленного, написала ему: "Что там есть такого у этих австралийских девиц, чего нет у меня?" На что он ответил: "Ничего, дорогая, но уних это здесь".)Ничего из этих мечтаний не вышло по одной простой причине: Чемберлен и коллеги, которые разделяли его мнение, ошибались. Из поляризованных мишеней вышло несколько результатов интересных, но отнюдь не фундаментальных, подобных тем, что были получены на пузырьковой камере. Сегодня эти мишени мало кого интересуют, кроме некоторых энтузиастов, которые еще ведут борьбу в арьергарде и публикуют странные, труднообъяснимые результаты. Во всяком случае, как я объяснил в главе "Ускорители и резонансы", общий интерес передвинулся от любых неподвижных мишеней, поляризованных или нет, на коллайдеры. В заключение скажу, что я создал для рынка прекрасное изделие, на которое, вопреки ожиданиям, оказался малый спрос. Во всяком случае все это скобяное и водопроводное дело, связанное с поляризованными мишенями для высоких энергий, мне смертельно надоело даже до того, как выяснилось падение спроса на них. Для моей любимой дочки — динамической поляризации в твердых телах — я имел в виду других женихов, но об этом позже. Что касается неуловимой Нобелевской, я любил рассказывать товарищам следующую историю. Мать часто у меня спрашивала: "Почему все получают Нобелевскую, а у тебя ее нет?" На что я отвечал: "Мама, я не Жан Поль Сартр. Когда я отказываюсь от Нобелевской, я это делаю так, чтобы никто об этом не слышал". Это, конечно, дважды выдумка: во-первых, тот, кто прочел написанное в этой книге о маме, поймет, что подобный вопрос от нее немыслим; во-вторых, отказ Сартра от Нобелевской премии, окруженный неслыханной рекламой, произошел через два года после кончины мамы. Интересно заметить, что в 1933 году, когда Дирак был награжден Нобелевской премией, он хотел от нее отказаться, потому что ненавидел рекламу. Резерфорд уговорил его этого не делать, уверив, что отказ сделает еще большую рекламу. Сартра подобные соображения не смущали.*Ядра без отдачиЕсть область физики, в которой лично я почти ничего не сделал, но которая меня очень заинтересовала, как только она появилась — испускание и поглощение излучения атомными ядрами без отдачи, или, как это названо по имени физика, открывшего это явление, — эффект Мёссбауэра. Вот в чем заключается его принцип. Атомное ядро А может перейти из возбужденного состояния | е > в основное состояние | g >, испуская гамма-квант с энергией Е. Ядро В, находящееся в основном состоянии | g >, может поглотить этот квант и перейти в возбужденное состояние | е >. Это — явление резонансного поглощения, широко известное в оптике. Но в случае ядерного излучения появляется затруднение. Во время эмиссии, чтобы выполнялся закон сохранения количества движения, на отдачу ядра А уходит энергия R за счет кванта гамма-луча, который уносит лишь энергию Ј = (E — R). Аналогичное рассуждение показывает, что для возбуждения ядра В потребуется энергия E" = (E + R). Получается расхождение в 2R между энергией луча и той, которая требуется для возбуждения ядра В. Таким образом, резонансное поглощение может произойти только в том случае, если уровни достаточно широки и энергия гамма-квантов достаточно "размазана", чтобы покрыть расхождение 2R. В оптическом резонансе так оно и есть, но не в ядерном, где уровни энергии гораздо уже. Например, для ядра 57 Fe его подробно изученный переход с энергией 14,4 кэВ имеет естественную ширину Д "4,6 • 10~9 эВ, в то время как энергия отдачи R к 2 • Ю-3 эВ, т. е. на шесть порядков величины больше. Все это было известно до Мёссбауэра, и физики-ядерщики уже давно старались искусственно увеличить ширину перехода, сообщая ядрам кинетическую энергию порядка 2R. Это делалось увеличением температуры или источника, или поглотителя, или их обоих. Британский физик Филип Мун (Philip Moon) пытался даже передать ядрам источника кинетическую энергию 2R, помещая источник на окружности быстро вращающегося колеса, как будто метая гамма-частицу пращой. В конце пятидесятых годов молодой немецкий физик Рудольф Мёссбауэр поставил опыт, в котором он понизил температуру источника (или поглотителя, не помню которого из них) радиоактивного изотопа 191 Ir, вместо того чтобы ее повысить, как делали все, и к своему удивлению наблюдал, что поглощение вместо того, чтобы уменьшиться, как ожидалось, увеличилось. Его главная заслуга заключается в том, что он не только обнаружил, но и объяснил это замечательное явление. На самом деле объяснение было известно и даже давно опубликовано, но не было замечено из-за необыкновенной слепоты всех тех, кто до сих пор занимался этим делом. Все рассуждения велись так, как будто радиоактивные атомы находятся в газе без взаимодействий. В твердом же теле, если энергия отдачи невелика по сравнению с энергией колебаний атомов в образце (что соответствует так называемой частоте Дебая), отдачу испытывает не атом, а весь образец, унося при этом энергию R', которая пренебрежимо мала. Это верно и для поглотителя. Понижение температуры в эксперименте Мёссбауэра уменьшало вероятность испускания или поглощения фононов одновременно с отдачей ядра, что могло бы размазать необыкновенно узкое поглощение или испускание ядерного излучения. Замечательно, что в 1939 году, за двадцать лет до открытия Мёссбауэра, Уиллис Лэмб (Willis Lamb) опубликовал полную теорию этого эффекта, правда для нейтронов, а не для гамма-квантов, но принцип там тот же. Что еще любопытней, это то, что Мун, тот, который метал гамма-кванты пращой, советовался с Пайерлсом в связи с этой проблемой и что тот рекомендовал ему почитать статью Лэмба. Что касается самого Лэмба, когда я однажды сказал ему в шутку: "Проморгали вы еще одну Нобелевскую" (первую он получил за несколько лет до того за открытие так называемого "лэмбовского сдвига", которое привело к возрождению квантовой электродинамики), он отозвался на эту дружескую шутку с горечью; очевидно, был не прочь получить вторую. Два американских физика повторили эксперимент Мёссбауэра, подтвердили его результаты и опубликовали их в "Physical Review Letters", что, наконец, привлекло внимание всех к этому открытию, в том числе и мое. Замечательно, что вместо того, чтобы проделать опыт на каком-нибудь другом ядре, тем более, что на многих других эффект гораздо нагляднее, чем на 191 Ir, они повторили опыт на том же ядре. Они просто не поверили результатам Мессбауэра и хотели показать их ошибочность. Невероятная тонкость мёссбауэровских линий, как они теперь называются, привела к совершенно новому методу развертки. Хорошо известно, что из-за так называемого допплер-эффекта частота fi источника, приближающегося к поглотителю со скоростью v, покажется поглотителю смещенной на fi (и/с), где с — скорость света. Естественная ширина мёссбауэровской линии, скажем в 57Fe, 2Д и Ю-9 эВ, и ее относительное значение, X = (2A/fi), где fi = 14,4 кэВ — энергия перехода, равно X к, 1 • Ю-13! Из этого следует, что изменение относительной скорости источника и поглотителя, необходимое, чтобы пройти через линию, равно v =сХ= 3 • 1010 • 7 • 10~13 и 0,02 см • с-1. На самом деле несовершенство решетки, спин-спиновые взаимодействия внутри образца и конечная толщина источника и поглотителя несколько расширяют линию: значение ее относительной ширины в 51 Fe будет ближе к 2 • Ю-12, чем к 7-Ю-13. Я привожу все эти подробности потому, что они потребуются немного позже. Приведенные выше данные явно переводят изучение эффекта Мессбауэра в область легкой и даже ультралегкой науки. Как только я услышал об этом эффекте, я стал о нем размышлять, потому что он мне страшно понравился чисто с эстетической точки зрения, и я посвятил ему тринадцать лекций в моем первом курсе в Коллеже. Я записал лекции на французском языке. Несмотря на это, один американский издатель выпустил их отдельной книжкой. Говорят, что в нее иногда заглядывают до сих пор. Физики-ядерщики, которые пришли в большом числе на первую лекцию, скоро убедились, что эффект Мессбауэра не для них, а для физиков твердого тела. В моей лаборатории Соломон из подручных материалов и приборов, одолженных в соседних лабораториях, смастерил за несколько дней аппарат, с помощью которого он смог наблюдать спектры некоторых соединений железа. Мое знакомство с теорией сверхтонкой структуры помогло ему в объяснении результатов. Независимо от других он обнаружил так называемый изомерный сдвиг, который, как я показал, аналогичен изотопическому сдвигу в оптических спектрах и объясняется разницей радиусов ядра в основном и в возбужденном состояниях. Я также показал, что знак квадрупольного момента ядра железа 57 Fe в первом возбужденном состоянии, приводившийся в литературе, ошибочен. Эта область физики, где собралась куча народу, довольно скоро надоела нам с Соломоном. Моим главным вкладом в эффектМессбауэра я считаю то, что уговорил заняться им молодого одаренного французского физика Пьера Эмбера (Pierre Imbert), искавшего в ту пору тему. Сегодня его лаборатория одна из лучших в мире.*Красное смещениеВ заключение я хочу рассказать историю наблюдения с помощью эффекта Мессбауэра явления, называемого "красным смещением". Это сдвиг частоты электромагнитного излучения в гравитационном поле; он был предсказан Эйнштейном, так же как и отклонение луча света под действием гравитационного поля, которое наблюдалось впервые Эддингтоном во время солнечного затмения в 1919 году. Необыкновенная узость мёссбауэровских линий создала в первый раз возможность наблюдать воздействие гравитации на электромагнитное излучение в лаборатории.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31