Современная электронная библиотека ModernLib.Net

Время вспять

ModernLib.Net / Физика и астрономия / Абрагам Анатоль / Время вспять - Чтение (стр. 30)
Автор: Абрагам Анатоль
Жанр: Физика и астрономия

 

 


Согласие, и не до седьмого, а до десятого порядка, не "отыскивают", оно "находится" само собой. Параметров, которые надо "подгонять" к результатам, здесь нет. Надо признать, что, так называемых, феноменологических теорий, где параметры "подгоняют" к результатам, в физике немало. Есть анекдот, который это прекрасно описывает и который, с вашего разрешения, я расскажу. Дело происходит в США во время гражданской войны между северянами и южанами. Северянин, кавалерийский офицер, проезжает верхом по деревне в одном из западных штатов. На двери каждого амбара кто-то нарисовал несколько концентрических кругов, как на мишени для упражнения в стрельбе, и в самой серединке каждой мишени — один-единственный след пули. Офицер спрашивает у парня, который прислонился к амбару:- Кто это тут упражнялся? Неплохой стрелок. — Да это Билли Джонс баловался с кольтом. — На каком расстоянии от амбара он стреляет? — Шагов тридцать. — Долго целился? — Кто? Билли? Да нет, выхватывает из кобуры и стреляет. — Вот это стрелок! Таких нам и надо. — Не в обиду будь сказано, лейтенант, Билли вам не подойдет. — Не твоего это ума дело. Он за тридцать шагов от мишени стоит, когда стреляет? — Ну, тридцать, тридцать, иногда и за сорок. — И долго не целится? — Да говорил же я вам, выхватывает и стреляет. — Ладно, вот тебе парень доллар, приведи мне твоего Билли, да поскорее. — Иду лейтенант, и большое вам спасибо. А все-таки разрешите сказать, что Билли сперва стреляет, а потом только круги рисует.
      Как последний пример близкого сотрудничества между теорией и экспериментом назову несохранение четности в так называемых слабых взаимодействиях, к которым принадлежит, между прочим, и ядерный /? — распад. Про теорию говорят, что она сохраняет четность, когда нельзя отличить явления, которые она описывает, от их отражения в зеркале. Давно было известно, что четность сохраняется с большой точностью в электромагнитных взаимодействиях, а также и в сильных взаимодействиях, которыми обусловлены ядерные силы. До 1958 года предполагалось, что так же обстоит дело в слабых взаимодействиях. По крайней мере, не существовало экспериментальных данных, доказывающих обратное. И снова поднял тревогу эксперимент. В космических лучах открыли две неустойчивые частицы, названные г и е. В пределах экспериментальных погрешностей масса и время жизни частиц были одинаковы, но их распады через слабое взаимодействие указывали на противоположные четности. Равенство массы и времени жизни двух частиц, казалось бы различных, было "заманчивой загадкой". Два теоретика — Ли и Янг, — которые "над нею голову ломали и чудеса подозревали", осмелились задать вопрос: "А что если m и 0 одна и та же частица, способная распадаться по двум различным схемам? (В одном знаменитом детективе из пары близнецов один — убийца, а другой — порядочный человек. И герой раскрывает тайну, догадавшись, что близнецы не существуют и что убийца и порядочный человек — одна и та же личность.) Ли и Янг рассмотрели все существующие опытные данные, на которых была основана гипотеза о сохранении четности в слабых взаимодействиях и убедились, что ни одно из них не противоречило нарушению четности. Задумали и наскоро провели два различных эксперимента, которые доказали, что в слабых взаимодействиях четность действительно нарушается и притом максимально. Последнее означает, что члены, нарушающие, и члены, сохраняющие четность, имеют одинаковый вес во взаимодействии. И круг замкнулся: экспериментальное открытие частиц m и в — теоретическая гипотеза Ли и Янга — экспериментальное доказательство нарушения четности. Для анекдота расскажу, что наш дорогой Паули прозевал еще одну прекрасную возможность промолчать, предсказав, что опыт покажет, что четность не нарушается.
      Могу поразить господина Тома, да и не только его, заявив, что теоретическая физика не является точным синонимом математической физики. Безусловно, на конечном этапе теория выражается математически, но иногда (не всегда, конечно) это вспомогательный процесс, после того, как идея была сформулирована обыкновенным языком. На понятии "составного ядра" (compound nucleus), предложенном Нильсом Бором, которое можно выразить в нескольких словах, целое поколение теоретиков-ядерщиков кормилось двадцать лет. Часть модели ядерных оболочек, которая принесла Нобелевскую Марии Мейер, содержалась в простом вопросе, который ей задал Ферми на семинаре: "Рассматривали ли вы роль спин-орбитальной связи?".Всей долгой научной деятельности Луи де Бройля можно подвести итог одной фразой: "Фотон, который — волна света, вместе с тем и частица, почему бы электрону, который — частица, не быть бы и волной материи".
      И есть ли более прекрасный пример теоретической физики, чем дискуссия, в которой Эйнштейн предлагает один за другим целый ряд "мысленных" (gedanken) экспериментов, чтобы доказать несостоятельность квантовой теории, и где каждый раз Бор обнаруживает изъян в его рассуждениях, вершиной которых является недосмотр Эйнштейном смещения частоты световой волны в гравитационном поле.
      *После того как я стал членом нашей академии наук, несколько иностранных академий обратили на меня свое благосклонное внимание. В 1974 году я был избран почетным членом Американской академии гуманитарных и точных наук (American Academy of Arts and Sciences). В 1977 году меня выбрали иностранным членом Национальной академии США (US National Academy). В 1981 году я был выбран в члены Ватиканской академии (Pontifical Academy). Канцлер академии (что не то же, что президент), милейший иезуит отец ди Ровазенда, пригласил меня представить (до выборов) очерк своих научных заслуг, нечто вроде Notice, которую я сочинил девять лет тому назад для нашей академии. Я нашел, что теперь слишком стар для такого рода упражнений и отказался это сделать. Я просил академию видеть в моем отказе знак не гордости, а смирения. Я написал любезному отцу, что "если мои труды для того, чтобы привлечь внимание академии, нуждаются в рекламе от меня самого, это означает, что они его недостойны, и что мне не место среди вас". Мое "смирение", очевидно, не слишком покоробило членов академии, потому что они меня выбрали. В 1981 году я был в саббатическом отпуске в Оксфорде, когда из Ватикана пришло приглашение принять участие в пленарной сессии академии, которая оплачивала все расходы на поездку для Сюзан и для меня. Во время сессии предполагалась аудиенция Святого Отца, что вызвало радостное волнение у моей католички Сюзан. В лондонском аэропорту нас ожидало печальное известие. Персонал Alitalia бастовал, и казалось невозможным попасть вовремя на папскую аудиенцию. Сюзан была очень огорчена. Наконец, поздно вечером объявили единственный рейс в Палермо. С грустью в сердце мы отправились в Палермо. Только чудом могли бы мы попасть в Ватикан на папскую аудиенцию, назначенную на следующий день в двенадцать часов дня. И чудо произошло! Не успели мы усесться, как по радио объявили, к великому гневу всех пассажиров, направлявшихся в Сицилию: "Этот рейс будет в Рим".
      В октябре 1986 года праздновали пятидесятилетие Ватиканской академии и было запланировано несколько кратких докладов. Мне предложили прочесть, в десять или пятнадцать минут, доклад на тему "Куда идет физика?" (Where to, Physics?), своего рода "Камо грядеши", для которого требовался "горизонтальный" физик. Я счел менее рискованным занятием "предсказывать" прошлое, и назвал свой краткий доклад "Откуда идет физика" (Where from, Physics?). И повел свое предсказание весьма произвольно — от 1945 года. Вот этот доклад, который не слишком перекрывается с тем, что я рассказал в своих дебатах с Томом.
      *" Революция квантов и революция, спровоцированная теорией относительности, были в прошлом; открытие позитрона увенчало их союз; строение атомов, в котором крохотные ядерные магнитные моменты играли ничтожную роль, названную очень подходяще сверхтонкой структурой, не хранило больше своих тайн. Теория, называемая квантовой электродинамикой, давала удовлетворительные результаты в любых вычислениях атомной физики в первом порядке, но вела, к сожалению, к бессмысленным бесконечностям при попытках улучшить ее точность. Физика твердого тела, развитая в рамках квантовой теории, объясняла электрическую и тепловую проводимость, но сверхпроводимость еще оставалась тайной. Существующая теория фазовых переходов казалась удовлетворительной, за некоторыми исключениями, которые считались маловажными. Оптика стала классической наукой, т. е. мертвой. Ядерная физика познала свои первые успехи, восхищающие или ужасающие. Знали про нейтрон и про ядерное деление, гипотеза нейтрино вернула веру в сохранение энергии. Юкава объяснил ядерные силы обменом между нуклонами тяжелыми частицами, которые, как казалось, были обнаружены в космических лучах и прозваны мезотронами. Сохранение четности стало догмой. Гигантские или казавшиеся такими, циклотроны и бетатроны ускоряли протоны, дейтроны, альфа-частицы и электроны до "баснословных" энергий порядка сотен МэВ. Наконец "гигантские" компьютеры, тгоявившиеся во время войны для военных целей, могли проделывать сотни операций в секунду и были ограничены только загромождением, охлаждением и частыми авариями электронных ламп, на которых они работали. Но ситуация менялась и быстро. В течение последних сорока лет во всех перечисленных выше областях науки теория и эксперимент быстро двигались вперед, стимулируя друг друга, разрабатывая новые орудия и улучшая старые. В атомной физике новая техника коротких волн, унаследованная от радара, позволила обнаружить в тонкой структуре атома водорода аномалию малых размеров, но громадного значения, так как теория этой структуры считалась незыблемым оплотом союза квантов и относительности. В этой аномалии, вместе с другой такого же порядка в магнитных свойствах электрона, скрывался ключ к непонятным и невыносимым бесконечностям квантовой электродинамики. Ободренные экспериментом теоретики осмелились, наконец, вычитать одну бесконечность из другой и таким путем извлекать конечные результаты, соответствующие наблюдаемым аномалиям. Отсюда вышла теория ренормализации, которая затем распространилась на другие области теоретической физики. Изобрели диаграммы, с помощью которых велись вычисления, прежде безнадежные, иногда очень отдаленные от квантовой электродинамики. Крошечные ядерные моменты, возбужденные надлежащим образом, испускали сигналы, наблюдение которых (под названием ядерный магнитный резонанс, или ЯМР) обратилось в одно из самых "проницательных" орудий для изучения свойств сплошной материи, позже биологических молекул, и, наконец, дало ЯМР-томографию, которая видит насквозь сердца и чресла людей. Физика твердого тела, в особенности изучение так называемых полупроводников, привела к самой фантастической революции нашего времени, через изобретение транзистора и его наследника микроскопического "чипса", которые умножили возможности компьютеров во много миллионов раз. Решили загадку сверхпроводимости и обнаружили одновременно новую породу сверхпроводников. Теория хорошо объяснила и практика широко использовала их технические качества для реализации гораздо более сильных магнитных полей при несравнимо меньшем расходе электрической энергии.
      Совсем недавно открыли совершенно новую породу сверхпроводников с критической температурой выше жидкого азота, свойства которых еще не поняты основательно до сих пор (1988 год). Оптику воскресили сперва через остроумную комбинацию поляризованного света и радиочастотных полей, но еще больше благодаря изобретению лазера, который скоро научились перестраивать, что произвело революцию в спектроскопии и создало новую науку — нелинейную оптику. Применение лазера в голографии, офтальмологии и других областях медицинской практики, и конечно, увы, к вооружению, бесконечны. Открыли частицу Юкавы, которая оказалась не той, что думали; доказали реальность нейтрино и открыли, что в слабых взаимодействиях догма сохранения четности нарушалась, причем очень сильно. Энергия ускорителей увеличилась на три порядка, создавая целый рой эфемерных частиц, которые с трудом укладывались в теоретические схемы. Обратимость времени в нашей жизни нарушается повседневно. На микроскопической шкале она была догмой, как и четность, но тоже нарушаемой, хотя гораздо слабее. Появились изощренные теории, которые намеренно отказывались от попыток описать реальность с какой-либо точностью и которые для неспециалиста, пишущего эти строки, могли быть выражены утверждением "все содержится во всем".
      Затем, благодаря нескольким прекрасным открытиям, экспериментальным и теоретическим, сделанным за последние пятнадцать лет, все более или менее пришло в порядок, по крайней мере, до поры до времени. Существует теперь совокупность теорий, опирающихся на бесспорные экспериментальные факты, которая носит название "стандартной модели". В этой модели существуют два типа первичных составляющих материи: во-первых, "кварки", по три на нуклон, которые подвержены так называемым "сильным взаимодействиям" и описываются теоретически "квантовой хромо-динамикой"; во-вторых, "лептоны", которые взаимодействуют друг с другом, а также с кварками в рамках так называемой "электрослабой" теории — слиянии квантовой электродинамики и теории слабых взаимодействий. Мечта теоретиков элементарных частиц это слияние квантовой хромодинамики и электрослабой теории в одно целое в рамках так называемого "великого объединения". Они полагают, что такая теория дала бы правильное описание сущности вещей в самом начале после рождения невозможно горячей Вселенной, сразу после так называемого "большого взрыва" (Big Bang). Но за "великим объединением" мерцает еще одна возможность: старая мечта Эйнштейна — слияние всех физических теорий с тяготением. Физика конденсированного состояния не осталась позади. Новые понятия ниспровергли существующую теорию фазовых переходов и показали, что за бесконечным разнообразием физических явлений вблизи фазовых переходов таится одно и то же поведение. Эти предсказания теории были проверены экспериментом с большой точностью. Для изучения конденсированного состояния были розданы новые методы и орудия; во-первых, конечно, лазер, а также дифракция медленных нейтронов и электронов, ЯМР и многие другие. Большое внимание привлекли двумерные* системы, самым важным, но не единственным, примером которых являются поверхности. Замечательные возможности в этом направлении представляет недавно появившийся "сканирующий туннельный" микроскоп. Наконец, беспорядочные системы всякого рода приобрели большую теоретическую и экспериментальную важность. Возникла и пользуется большим интересом новая статистическая механика, не ограниченная требованиями эргодичности. Наконец, благодаря новым возможностям компьютеров пользуются большой популярностью так называемые "симуляции" или "компьютерные эксперименты", где реальность — незваный гость.
      *Я пришел к концу этого перечня, в котором каждая область физики может считать себя обиженной, не понятой или просто забытой. Прошу заранее прощения у коллег, которые работают в этих областях. Разрешите мне обратиться на минуту к нашим коллегам и друзьям — к биологам, молниеносные успехи которых, по мнению некоторых, вызывают нашу зависть. Не верьте им: если мы искренно радуемся вашим успехам, это потому, что мы считаем их своими. Вы заимствовали наше оборудование и нашу технику, то, что компьютерщики зовут hardware. Но, что важно, вы заимствовали наше мышление, наш software, а в этом все. Товарищи физики живой материи, я вас приветствую".
      В 1983 году я был избран иностранным членом Британского Королевского общества. Можно заметить, что стать иностранным членом Королевского общества гораздо труднее, чем попасть в ту или другую из американских академий, к которым я уже принадлежал. Во-первых, число иностранных членов в Королевском обществе гораздо меньше, чем в этих академиях, но главное в том, что в Америке при выборе иностранцев среди претендентов отсутствуют, разумеется, американские физики, т. е. самые опасные соперники. После выборов я получил приглашение на торжественный банкет Королевского общества, которое настаивало на фраке, которого у меня до сих пор не было, не допуская его младшего брата — смокинга, который у меня был. Мой мудрый друг Николас Курти посоветовал мне носить мой темно-зеленый академический мундир, который скроен, как фрак. Я последовал его совету и произвел настоящий фурор среди своих британских коллег. Голландская Королевская академия не сделалась моей шестой академией, но оказала мне гораздо большую честь, наградив меня в 1982 году медалью имени Лоренца. Чтобы отпраздновать это событие, в Париже устроили прием под председательством тогдашнего министра науки Шевенмана (Chevиnement). Я прочел небольшой доклад, часть которого я здесь включаю, во-первых, потому что он содержит несколько забавных истооий о знаменитых физиках, о которых я еще не рассказывал, а во-вторых (зачем скрывать), чтобы немножко похвастаться.

Двенадцать физиков

      Медаль имени Лоренца присуждается каждые четыре года Королевской академией Голландии физику-теоретику. Она была основана в 1925 году в честь великого теоретика Антона Лоренца, профессора теоретической физики Лейденского университета. Кроме металлического кружочка с портретом Лоренца и именем лауреата, эта награда, в отличие от премий Нобеля, Ферми или Вольфа, не приносит никаких материальных благ, способных облегчить жизнь трудящихся. Для меня ее ценность заключена всецело в списке имен моих двенадцати предшественников. Для тех, кто не имеет счастья (или несчастья) быть физиком, я напомню очень кратко, что сделал каждый из них, чтобы заслужить эту медаль. Чтобы рассеять скуку такого перечисления, постараюсь рассказать про каждого из них маленький анекдот. Вот что я слышал про самого Лоренца. "Ему, конечно, присылали очень много теоретических работ. Прежде всего он прочитывал формулировку задачи. Если задача казалась интересной, он откладывал работу и сам решал задачу. Затем он сверял свое решение с чужим. Если они совпадали, он выбрасывал оба в корзинку. Если они расходились, он выбрасывал чужое и печатал свое".
      Первым лауреатом в 1927 году был создатель квантов Макс Планк. Вряд ли нужно что-либо прибавлять даже для нефизиков. Все слышали об его революционной гипотезе, опубликованной в 1900 году, о том, что свет испускается и поглощается не непрерывно, а отдельными квантами. "Одно время, испугавшись своей собственной смелости, Планк сделал попытку ограничить свою гипотезу: "свет испускается квантами, но поглощается непрерывно". Это вызвало у юного Эйнштейна следующее непочтительное суждение: "В столовой всегда, а в уборной иногда?".
      В 1931 году второй лауреат — Вольфганг Паули — один из наиболее глубоких теоретиков нашего века, который открыл, между прочим, "принцип запрета", ответственный за устойчивость атомов. Про Паули существует бесконечное количество анекдотов. Все вращаются вокруг факта, что скромность и снисходительность не являлись его главными добродетелями. (Но я уже рассказал в этой книге все мои истории о Паули.)
      Третий лауреат, в 1935 году, — Питер Дебай. Он создал теорию кристаллических и плазменных колебаний, изобрел охлаждение путем адиабатического размагничивания и т. д. Согласно Капице, в 1925 году Шредингер прочел на дебаевском семинаре в Цюрихе доклад о новой волновой теории де Бройля, который показался неубедительным Дебаю. "Что это за волны? Где волновое уравнение?" — спросил он. Неделю спустя, по преданию, Шредингер вернулся со своим волновым уравнением.
      Четвертый, в 1939 году, — Арнольд Зоммерфельд — один из лидеров математической физики начала века, автор важных трудов о распространении и дифракции света и релятивистского обобщения уравнения Шредингера. Гейзенберг и Паули оба были его студентами. Профессор Хунд (автор правила Хунда в спектроскопии) рассказал мне следующую историю (я указываю источник, потому что она мне показалась невероятной). Защитив диссертацию у Зоммерфельда в Мюнхене, Гейзенберг выставил свою кандидатуру на должность доцента в том же университете. Зоммерфельд ему написал: "Как умный человек, Гейзенберг, вы должны были бы понять, что Мюнхен не для вас". — "Быть можно дельным человеком… " и плохо разбираться в людях.
      Пятым, и первым после войны, был Гендрик Крамер в 1947 году — пионер квантовой механики и автор (одновременно с Венцелем и Бриллюэном) мощного полуклассического приближения. Он дорог мне лично как автор теоремы, на которой зиждется возможность наблюдения магнитного резонанса. Не слышал ни одного анекдота про него.
      Шестым, в 1953 году, был Фриц Лондон — автор мощной феноменологической теории сверхпроводимости, которая оказала и продолжает оказывать громадные услуги. Вместе с Гайтлером они создали квантовую теорию химической валентности. Тоже без анекдотов.
      Седьмым, в 1958 году, был Ларе Онсагер — специалист динамики необратимых процессов, открывший соотношения симметрии, которые носят его имя, и точное решение задачи дальнего порядка в двух измерениях, которое далеко продвинуло теорию переходов. Он был одним из глубочайших мыслителей нашего времени и, как я могу лично засвидетельствовать, одним из его худших преподавателей. К счастью, в университете Yale, где он преподавал, у него был коллега по имени Кирквуд (Kirkwood), физико-химик, который, кроме своих личных качеств, оказал пользу человечеству тем, что понимал Онсагера и был понятен другим.
      Восьмым, в 1962 году, был Рудольф Пайерлс, который внес важный вклад в квантовую теорию поля, в физику твердого тела и в ядерную физику, где он сыграл крупную роль в развитии ядерного оружия. Недавно он был награжден премией Ферми, но, кроме того, получил немалую сумму денег при забавных обстоятельствах, за то, что не умер. Вот как это произошло. Были слухи, что кроме трех советских агентов, Бэрджеса, Маклина и Филби, которые скрывались в СССР, в Англии остался четвертый сообщник, который был ученым. Один лондонский журналист, думая, что Пайерлс давно умер, написал в книге о советской разведке, что именно он был этим сообщником. После выхода книги в свет адвокат Пайерлса и адвокат издателя легко сговорились насчет компенсации, которую издательство должно было выплатить Пайерлсу за клевету — немалое количество тысяч фунтов стерлингов. Пайерлс мне говорил, что, если бы он обратился в суд, после длительного разбирательства ему присудили бы, вероятно, вдвое больше, но за это время он вполне мог бы умереть на самом деле.
      Девятым, в 1966 году, был Фриман Дайсон, который принес далеко не очевидное доказательство эквивалентности электродинамики по Швингеру и по Фейнману, а также возможности ее ренормализации в любом порядке. Он сделал много важных работ в области беспорядочных систем. Он был студентом в Кембридже во время войны, когда его завербовали в группу, занимающуюся оценкой результатов стратегической бомбежки Германии. Там он сделал два предложения, которые сильно не понравились начальству. Он рекомендовал снять с бомбардировщиков тяжелые пулеметы, которые, как он считал, были совершенно бесполезны из-за большого мертвого угла, в котором они не могли достать немецких истребителей; кроме того, из-за большого веса они замедляли и скорость самолета, мешая ему спастись бегством от истребителей. Вторая рекомендация касалась трудности, с которой открывались люки, из-за чего экипаж не успевал выпрыгнуть с парашютом. На первое предложение военное начальство ответило с негодованием, что не могло быть и речи о том, чтобы посылать в бой безоружных бойцов, а на второе — что это было бы поощрением дезертирства.
      Десятым, в 1970 году, был Джордж Уленбек — один из крупнейших специалистов статистической механики, который совсем молодым добился широкой известности в связи с открытием, вместе с Сэмом Гудсмитом, аномального магнитного момента электронного спина. Отправив статью в редакцию, Гудсмит и Уленбек решили показать ее своему коллеге и ровеснику Паули, который был уже знаменит. Не теряя времени, Паули объяснил им, почему их статья была нелепицей, и посоветовал им взять ее обратно. Они поторопились это сделать, но, увы, или, вернее, к счастью, слишком поздно — статья уже была в печати.
      Одиннадцатым, в 1974 году, был мой друг и учитель Ван Флек. (Я писал о нем в главе "Америка, Америка".)
      Двенадцатым, в 1978 году, был Николаас Бломберген. (Его тоже я кратко описал в той же главе и ограничусь анекдотом, который он мне сам рассказал.)
      Когда Чарльз Таунс получил Нобелевскую премию за открытие лазера, он подарил своей жене рубин, чтобы отметить, что он сделал свое открытие на рубиновом лазере. И когда несколько лет спустя Бломберген получил Нобелевскую, его жена потребовала, чтобы он с ней обошелся, как Таунс со своей супругой. "Если ты настаиваешь", — ответил он, — "но я должен тебя предупредить, что мой работает на цианиде".
      Из моих двенадцати предшественников шестеро были награждены Нобелевской, но, за исключением Планка, после получения медали. Это стало неписанной традицией. В то время как Нобелевская премия опирается на проценты от капитала, единственный фонд, на который может рассчитывать медаль Лоренца, это перечень ее лауреатов. Я питаю серьезные опасения насчет вклада, сделанного в 1982 году. Хочу уверить вас, что говорю это совершенно искренне. Если же вы сомневаетесь в моей искренности, я вам напомню изречение Жюля Ренара, с которого я начал эту книгу: "И ложная скромность не так уж плоха".
      (С большим удовольствием я узнал, что четырнадцатым лауреатом в 1986 году стал молодой голландец Герхардт Туфт (Gerhardt Tooft), что составляет прекрасный вклад в "капитал" медали Лоренца. Он сделал для электрослабой теории то, что много лет до него Дайсон сделал для квантовой электродинамики, доказав возможность ее ренормализации.)
      Вот и все.

Эпилог

      В начале предисловия я написал о поэме "Евгений Онегин", что "все пять тысяч строк ее я однажды насильно ввел в свою память при обстоятельствах, о которых, может быть, расскажу при случае". Вот эти обстоятельства: после инфаркта у Сюзан было время, в течение которого я не мог ни работать, ни читать, ни спать. Я вышел из этого состояния, выучив поэму наизусть. Я хочу выразить свою благодарность поэту, заимствуя у него эти строчки: "Кто б ни был ты, о мой читатель, Друг, недруг, я хочу с тобой Расстаться ныне как приятель. Прости…"

Комментарий к Сольвеевским фотографиям

Золотая треть

      Никогда за весь двадцатый век, который уже близится к концу, физика не шагала вперед столь молниеносно, как во время его первой трети. Мне подумалось, что нашей молодежи интересно увидеть как выглядели титаны мысли, которые так решительно отрезали наше столетие от прошлого. Конечно, за следующие без малого шестьдесят лет появились новые гении и физика продолжает шагать вперед, но лично автору кажется, что все, что произошло после первой трети несравнимо с первой гигантской флуктуацией. Вот как говорит о физиках Штрум в романе Василия Гроссмана "Жизнь и Судьба". "Физики прошлого века напоминали Штруму людей с нафабренными усами, в костюмах со стоячими крахмальными воротничками, столпившимися вокруг бильярдного стола. Глубокомысленные мужи, вооруженные линейками и часами-хронометрами, измеряют скорости и ускорения, определяют массы упругих шаров, заполняющих мировое зеленое суконное пространство."Воистину, не так ли выглядят глубокомысленные мужи, усевшиеся под вычурной люстрой на первом Сольеевском конгрессе 1911 года. Но несколько фигур уже меняют картину. За столом рядом с учеными мужами сидит женщина — Мария Кюри, которая открытием радиоактивности внесла переполох в мир линеек, хронометров и шаров. А на заднем плане, под прикрытием крахмальных воротничков уже стоят революционеры — Макс Планк (с его бессмертной константой), Эрнест Резерфорд (разбивший атомное ядро) и самый отчаянный, тридцатидвухлетний революционер, Альберт Эйнштейн, который уже шесть лет тому назад разбил световые волны на кванты и, по словам Гроссмана, заставил "искривляться, растягиваться и сплющиваться пространство, измеренное металлическими стержнями и линейками, и время, отмеренное совершеннейшими часами".
      То ли еще будет. Взгляните на фотографию 1927 года. Эйнштейн царствует теперь в первом ряду, но никогда не согласится принять вероятностное толкование квантовой механики Бора и Борна, которые сидят тут же. ("Бог в кости не играет", — говорит он.) Во втором и в третьем ряду уже пришли на смену создатели новой квантовой механики, три "молокососа" — Гейзенберг, Паули и Дирак, — тридцатипятилетний де Бройль, и "старый" сорокалетний Шредингер. Сольеевские конгрессы все еще существуют, но их теперешняя роль ничтожна по сравнению с той, которую они когда-то играли. Будучи сам много лет членом Совета этого учреждения, я получил в свои руки замечательные фотографии, которые и помещаю в этой книге для назидания молодежи. Ниже приведены списки участников Сольвеевских конгрессов. В скобках указан год присуждения Нобелевской премии по физике (NP) и по химии (NC) и Лоренцевской медали (LM). Автор считает, что несправедливо обойдены Нобелевской: Ланжевен — автор теории парамагнетизма и броуновского движения, Зоммерфельд — усовершенствование первой модели Бора и ее релятивистское обобщение, Пуанкаре — работы по теории относительности и главное за гениальные работы по теоретической механике, на которых основаны все современные понятия о хаосе. Эйнштейн получил Нобелевскую только в 1920 году и то не за теорию относительности!, а за теорию фотоэлектрического эффекта. Эрнест Сольве (Ernest Solvay) — бельгийский химик, — разбогатевший на изобретении производства углекислого натрия, основал и финансировал Сольеевские конгрессы. Рассказывают (не ручаюсь за достоверность), что Сольве, хотя и химик, имел свои соображения насчет теории тяготения и стремился изложить их крупнейшим ученым своего времени. Кто-то (говорят, сам Лоренц) посоветовал ему основать встречи ученых всех стран, где нашло бы место и изложение его собственных идей. Во всяком случае, физика первой трети нашего столетия обязана Эрнесту Сольве многим.

УЧАСТНИКИ СОЛЬВЕЕВСКОГО КОНГРЕССА 1911 ГОДА

      Сидят, слева направо: Вальтер Нернст (NC 1920), Марсель Бриллюэн (отец Леона Бриллюэна), Эрнест Сольве, Хендрик Лоренц (NP 1902), Эмиль Варбург Жан Перрен (NP 1926), Вильгельм Вин (NP 1911), Мария Склодовская-Кюри (NP 1903, NC 1911), Анри Пуанкаре. Стоят, слева направо: Гольдшмидт, Макс Планк (NP 1918, LM 1927), Генрих Рубенс, Арнольд Зоммерфельд (LM 1939), Ф.Линдеман, Морис де Бройль, Мартин Кнудсен, Хазенхерль, Хо-стелет, Е.Херзен, Джеймс Джине, Эрнест Резерфорд (NC 1908), Гейке Камерлинг-Оннес (NP 1913), Альберт Эйнштейн (NP 1921), Поль Ланжевен.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31