Современная электронная библиотека ModernLib.Net

По следам сенсаций

ModernLib.Net / Бобров Лев / По следам сенсаций - Чтение (стр. 8)
Автор: Бобров Лев
Жанр:

 

 


      В чёрном небе — яркие немигающие звёзды. И среди них, огромный, весь в голубом сиянии шар. Это Земля. А под ногами — пыльная, изрытая оспинами почва. Море Дождей… Вокруг пугающе мёртвая, холодная тишина. И вдруг — лёгкое ритмичное сотрясение грунта. Откуда ни возьмись, из-за гребня кратера появляется странное подобие существа с ярко горящим глазом. Безногое, бесколесное, как же оно двигается? Вот если бы его тело извивалось, подобно змее, — так нет же! Но посмотрите, как ловко ползёт оно по неровному грунту, перетекая через рытвины и ухабы, огибая, а если надо, то и пробивая мощным клювом-долотом препятствия, встающие стеной на пути. Что это? Существо опрокинулось на бок! Как, даже на спину? И всё-таки двигается! Ползёт как ни в чём не бывало, метр за метром оставляя позади себя лунное бездорожье…
      Это не совсем мистификация. Такой полоз-самоход действительно пригодился бы десантникам, высадившимся на Луне. Негостеприимный спутник нашей планеты не встретит космонавтов ни сверкающими лентами автострад, ни укатанными трактами. Привыкшие к земным скоростям, колёсные и гусеничные танкетки будут на малейших горбинах подпрыгивать так высоко, что, чего доброго, порастрясут всех своих пассажиров. Ведь на Луне любой груз весит в шесть раз меньше! Недаром сейчас конструкторы поговаривают о шагающих транспортных средствах. Передвигаться по Луне на рысях, по-видимому, сподручнее. Перебирая ногами, словно паук, осторожно ступая лишь там, где нет ни бугров, ни воронок, ни трещин, космический иноходец обеспечит седокам больший комфорт. А если он перевернётся? А если нога попадёт в расщелину скалы? А если… Впрочем, если бы даже не было этих «если»; не лучше ли, не проще ли построить упомянутый выше «полоз»?
      Никаких выступающих движителей: ни колёс, ни гусениц, ни ног. Двигатель спрятан внутри. Причём это не ракетная установка, так что баки с топливом и окислителем не нужны. Двигатель питается от электрических батарей, заряжаемых солнцем. Только вот какой выбрать двигатель? Уж не машину ли Дина?
      Судите сами.
      В 1959 году, когда у нас о Дине ни кто ещё ведать не ведал, в Новокузнецком металлургическом институте додумались до замечательной штуки. Представьте себе небольшой, с чемодан, наглухо закрытый со всех сторон ящик.
      Без колёс, без ног, без других ходовых органов. Но вот раздаётся радиокоманда — и ящик устремляется вперёд. Не так чтобы быстро, зато уверенно; на буксире он тянет за собой детский велосипед, на котором восседает дюжий молодец, этак с боксёра полутяжёлого веса. Сам ящик, весящий 25 килограммов, развивает силу тяги 13 килограммов при скорости около полутора метров в секунду.
      «Чудо-ящик» построен на общественных началах группой сотрудников и учащихся института: старшим преподавателем В. Тришункиным, лаборантами Т. Антипиным и И. Бедаревым, студентами В. Ларионовым, А. Бетхольдом, А. Пономарёвым и Ю. Шупиловым. Работой руководил доцент Н. Филатов. Он и рассказал о ней недавно в журнале «Наука и жизнь».
      Необычный тягач ведёт себя в полном соответствии со всеми принципами механики. Внутри кожуха запрятана тележка. Её колёса бегают вперёд-назад по рельсам, прикреплённым к днищу кожуха. На платформе установлен электромотор, а по соседству — питающийся от него вибратор. Толчки вибратора то придавливают тележку вместе с кожухом к земле, то подбрасывают кверху. Когда машина очутится во взвешенном состоянии, кривошипно-шатунный механизм подвигает кожух вперёд. Но как только кожух прижмётся к земле и сцепится с нею силами трения, шатун немедленно заставит тележку выкатиться по рельсам вперёд. Прыгнув вверх на 10 миллиметров, ящик скачет вперёд на 50. Машина мелкими шажками семенит да семенит вперёд, даром что безногая. Высоту прыжков и длину шагов легко регулировать прямо на ходу.
      Вибратор состоит из двух эксцентриков, вращающихся в противоположные стороны, то есть, по существу, из двух волчков. Понятно, что машина, подобно едущему двухколёсному велосипеду, приобретает гироскопическую устойчивость, очень важную во время езды по бездорожью. Если днище и крышку кожуха сделать выпуклыми, то такой обтекаемый ящик будет ползти даже вверх ногами, накренившись или вовсе опрокинувшись. Можно добиться и того, чтобы машина, как ванька-встанька, стремилась занять любое определённое положение, приданное ей на старте. Когда же к носу механического пресмыкающегося прикрепили пику, новоявленный единорог начал, словно заправский отбойный молоток, крошить и разрушать препятствия, даже бетонные стенки.
      Хотите знать, где пригодится инерционно-шагающий механизм новокузнецких изобретателей? Пусть лучше ответят сами авторы: «Его можно использовать для подводных работ, — например, при съёмке поперечного профиля реки. Инерционно-шагающий тягач может перевозить грузы через заболоченные местности, передвигать машины в обводнённых забоях гидрошахт. Весьма перспективно использование «чудо-ящика» при ремонте металлургических печей и дымоходов, при очистке пульпопроводов и канализационных труб. Наконец, не исключено, что в будущем такие тягачи окажутся полезными в качестве транспортных средств при обследовании, например, Луны».
      Думается, что в таком качестве, переделанный в, соответствии с новокузнецким патентом, сгодился бы и аппарат Дина, который покамест только и умеет что подпрыгивать на месте. Тогда ему, может, и привелось бы побывать в космосе. Только не потому, что сам взлетит, отнюдь: рождённый ползать летать не может. Такая уж у него планида. Его подняли бы ракеты — в полном соответствии с законами Ньютона, — доставили бы к месту назначения. А там — почему бы и нет? — глядишь, он и окажется незаменимым транспортёром — опять же в рамках известных физических принципов. И можно поручиться, что если машиной Дина заинтересовались дельцы, то скорее всего потому, что почуяли в ней, именно такие потенциальные, но надёжные практические возможности.
      В журнале «Юный техник» за три месяца до первого сообщения нашей печати о работах Дина был описан бесколесный прыгающий автомобиль советского инженера В. Турика. Эксцентриковое устройство у него в принципе то же, что и в машине Дина. Модель построили и испытали. Она исправно двигалась по земле, и никто не собирался на ней рваться в облака.
      А ещё четыре года тому назад появился проект челябинца Бурундукова. О нём писал журнал «Техника—молодёжи». Сердцем устройства были два скользящих эксцентрика, изменявших расстояние от оси вращения. Каждый груз, перейдя в верхнее положение, оказывался наиболее удалённым от вала, причём центробежная сила достигала максимума; в нижнее — наименее удалённым (центробежная сила принимала наименьшее значение). Автор проекта надеялся, что, как только скорость вращения турбины станет достаточно высокой, центробежные силы перекроют вес всего механизма, и устройство воспарит к небесам. Чем не машина Дина, а?
      Инженер Г. Н. Остроумов, который обстоятельно проанализировал действие эксцентриковых механизмов, ещё тогда убедительно показал, что ни аппарат Бурундукова, ни ему подобные устройства — бывшие, сущие и грядущие — крыльев не имут.
      Список приведённых примеров можно было бы продолжить. Но разговор затея, отнюдь не для того, чтобы посягнуть на сомнительные лавры Нормана Дина. Важно извлечь урок из всей истории с «патентом на идею Мюнхгаузена».
      Мы не собираемся хулить Дина, хотя его наивность, граничащая с невежеством, заслуживает самого строгого порицания.
      Мы не собираемся хвалить Дина, хотя его увлечённость, граничащая с одержимостью, заслуживает самого искреннего восхищения.
      Однако адвокату Дина кое в чём хотелось бы возразить. Лейтмотивом выступления Джона У. Кемпбелла-младшего в защиту своего подопечного служит противопоставление учёного, слепо полагающегося на теоретические догмы и высокомерно взирающего на «этих малограмотных опровергателей», инженеру, а иногда даже не имеющему систематического образования изобретателю, дерзко экспериментирующему вопреки так называемым «очевидным» истинам и пренебрегающему теоретическим осмысливанием своих поисков. Симпатии автора явно на стороне последнего, хотя, если говорить начистоту, скверны обе крайности — как всякие крайности. Однако не будем касаться снобизма учёных — его уже (заодно с бюрократизмом) с неподражаемым сарказмом заклеймил Кемпбелл. Поговорим лучше — как бы это выразиться — об отсутствии культуры, что ли, в работе некоторых изобретателей и авторов дерзких гипотез. Тем более что с этим пороком, вернее, с этой бедой приходится встречаться довольно не редко — во всяком случае, в редакционной практике. Опровержения появляются раз в полвека. Опровергатели появляются раз в полгода…
      Вот доподлинная цитата из Кемпбелла: «Дин не обязан понимать своё изобретение, если он может заставить его работать». И далее совсем уж афористически: «Вещь вовсе не обязана поддаваться уразумению, чтобы быть полезной».
      Золотые слова! Не надо ворошить историю техники, чтобы раскапывать подтверждения этому самоочевидному тезису. Сколько изобретений и открытий получило теоретическое обоснование многие годы, а то И столетия спустя! Но сумел ли Дин дотянуть своё детище до уровня изобретения, тем более полезного?
      Нет, если говорить о мифическом безреактивном летательном аппарате, из-за которого загорелся весь сыр-бор, но который до сих пор никто не «заставил работать».
      Да, если иметь в виду устройство, запатентованное в США под номером 2 886 976. Это устройство действительно способно добраться до Луны Или до Марса, если… если предварительно протянуть туда с Земли ленту, по которой оно перемещается, цепляясь, как кошка за канат. Тогда позволительно спросить: а что тут понимать? Что не поддаётся объяснению?
      Очевидно, эмоциональное начало возобладало над рациональным в оценке машины страхового агента Дина журналистом Кемпбеллом, начисто отвергающим перестраховку. Именно на это рассчитывают порой творцы скороспелых спекуляций, с тихим упорством маньяка обивающие пороги редакций — лишь бы «пропечататься». А там хоть трава не расти.
      У нас огромно уважение к печатному слову. И научно-популярная литература старается по мере сил оправдать читательское доверие. Я не знаю такого журналиста, писателя или редактора, который, не будучи специалистом, на основании одних только личных впечатлений взял бы на себя смелость с апломбом отстаивать ту или иную теоретическую концепцию. Для оценки всякой своеобычной идеи принято привлекать авторитетных консультант тов. В конце концов журналисту, с точки зрения самой элементарной этики, не положено быть арбитром в научном споре. Такой порядок кажется настолько естественным, что его невольно считаешь общепринятым повсюду. Между тем история с шумихой вокруг машины Дина лишний раз демонстрирует, сколь легкомысленно доверять сенсационным заявлениям западных научно-популярных изданий. Но не об этом сейчас наша забота.
      Конечно, иногда нужно полагаться в какой-то степени и на самого автора изобретения или гипотезы. Вот тут-то и начинается закавыка. Изобретательская гвардия в нашей стране неисчислима. Это люди самых разных возрастов и профессий. Частенько без специального образования. Иногда с образованием, не имеющим прямого отношения к научно-техническому «хобби». Большой беды тут нет: если у тебя есть «искра божия», твори, выдумывай, пробуй! В конце концов изобретательскому дару не научишься ни в школе, ни в вузе. Однако в изобретательском ремесле, помимо вдохновения, нужна, просто необходима определённая культура. И ей можно овладеть. Не будем пересказывать здесь весёлую и умную книгу В. Орлова «Трактат о вдохновении», где читатель сам найдёт немало полезных советов; добавлю лишь, что бичом большинства изобретателей является неумение, а подчас и нежелание самостоятельно работать с научной и патентной литературой. А ведь научно-техническому творчеству свойственна глубочайшая преемственность! Кажется, не кто иной, как Эдисон, брался доказать, что у автора всякого «совершенно нового, небывалого» изобретения обязательно найдутся предтечи. (Даже Норман Дин ссылается в своей заявке на три похожих патента: два американских и один итальянский.)
      Любопытно, что у нас каждый год более ста тысяч авторских заявок на изобретения признаются непатентноспособными по простой причине — повторяют зады! Не будем здесь касаться недостатков в организации научно-технической информации. Без недостатков не обходится ни одно большое дело. И всё же какие россыпи находок ждут вас в реферативных журналах Всесоюзного института научно-технической информации! Сколько сокровищ таят в себе четыре миллиона патентов Московской патентной библиотеки! А тридцать миллионов книг Ленинской библиотеки? Оказывается, треть из них никто никогда даже и не востребовал! Неужели из семи миллиардов людей, населявших нашу планету, во все времена так-таки никому и не приходил в голову вопрос, взволновавший вас? А может, на него уже и ответ найден? Не лучше ли отправиться сперва в библиотеку, чем тотчас, ничтоже сумняшеся с гипотезой в кармане направлять стопы прямёхонько в редакцию журнала?
      В статье В. Аграновского «Тайны патентной библиотеки», опубликованной «Экономической газетой» несколько лет тому назад, анализируются движущие мотивы изобретательства. Там приводятся такие, с позволения сказать, объяснения:
      Первый изобретатель. Разоружается психика! Мы способны на творческий полёт лишь при условии, если чувствуем себя первооткрывателями. Какие мы к чёрту Колумбы, если вокруг столько «рейсовых» попутчиков!
      Второй изобретатель. Помню, в ту пору, когда появились автомобили, я придумал оригинальную конструкцию навесных «дворников». Пришёл в бюро новизны, а мне выкатывают тележку с четырьмя громадными ящиками, полными патентов! Вот когда я по-настоящему понял, что надо иметь много мужества, чтобы заниматься изобретательством в мире, где, кажется, всё уже придумано…
      Третий изобретатель. Я жажду эффекта. Я решаю интереснейший ребус. И пусть он кем-то когда-то решён, пусть даже решение запатентовано — страсть к эффекту пересиливает. Сам могу! Сам дошёл! Жаль, говорите, времени? Плевать я хотел на время, если мне интересно.
      Платформа у всех высказываний одна — сугубо личная. Государственного подхода к делу нет.
      В. Аграновский предлагает ввести во всех технических вузах специальный курс — патентоведение. Думается, школьникам на практических занятиях тоже было бы полезно научиться не только строгать доски и нарезать резьбу, но и грамотно работать со специальной литературой. Быть просто хозяйственником-распорядителем в цехе, чертёжником-копиистом в конструкторском бюро или администратором-столоначальником в управлении — да разве для этого нужно высшее образование? Инженер — это прежде всего творец, изобретатель, энтузиаст технического прогресса. А чтобы ему не ломиться в отпертую дверь, не открывать Америку, он должен чувствовать себя среди потока отечественной и зарубежной информации как рыба в воде. Небезызлишне напомнить, что американские фирмы считают глубокую предварительную разведку в море информации выгодной во всех случаях, когда исследования в совершенно неизведанной области стоят не более ста тысяч долларов. Такую сумму Дин, игнорировавший специальную литературу и предпочитавший поиск вслепую, ухлопал уже к 1960 году.
      Вспомните слова Кемпбелла: «Дин вовсе не обязан вникать в теоретические тонкости. Он создал машину. Машина работает. Чего ж ещё?»
      Верно, не обязан. До тех пор, пока он числится скромным автором не бог весть какого лентопротяжного механизма. Но как только он объявляет во всеуслышание свой аппарат «летательным», да ещё таким, перед которым якобы пасуют все современные физические законы, тут уж, как говорится, пардон! Прежде чем транжирить десятки тысяч долларов, настырно соблазнять заинтересованные фирмы, с хлестаковской отвагой давать интервью, право, не лучше ли сесть и проштудировать хотя бы учебник физики для колледжа, средней руки?
      Пусть читатель не сетует на обилие сентенций. Грустный редакционный опыт водит пером пишущего эти строки.
      Рукопись объёмом в 95 страниц. Аккуратно переплетённая. С красивыми чертежами. За солидностью чувствуется большой труд и усердие занятого человека. Заголовок: «Гипотезы». В частности, о магнетизме. На первых же страницах — лаконичные титры тезисов, не оставляющих камня на камне от здания современной физики. Не поздоровилось ни Ньютону, ни Эйнштейну. Библиография работ, от которых отталкивался автор? Не тратьте труда понапрасну на поиски. Вот выдержка из сопроводительного письма Д. из Алма-Аты, автора рукописи: «Я ничего не читал о земном магнетизме по двум причинам, а именно: 1) ничего не нашёл, кроме брошюры о магнитах; 2) особенно и не стремился читать, дабы не сбиться с курса своих домыслов».
      Таких рукописей изрядную толику перевидали на своём веку сотрудники любого научно-популярного журнала.
      Графомания? Скорей всего людям просто не знаком стиль подлинно научных исследований. И до слёз обидно смотреть, как творческий задор и талант многих выдумщиков и умельцев транжирится впустую по неумению, по неграмотности, из-за легко устранимых препон.
      Рождённые летать не должны ползать во тьме голой эмпирики! И помочь им сбросить вериги изобретательского бескультурья — одна из задач школы, вуза, научно-технического общества, домов технической пропаганды, наконец, популярной литературы.
      Вот уже несколько лет, как в Москве открыт Университет технического прогресса и экономических знаний. Он создан на общественных началах. Без оплаты читают лекции, проводят семинары и консультации, делятся опытом пятьсот специалистов. На кафедре в аудитории вы увидите академиков А. Берга, В. Каргина, А. Дородницына, Н. Жаворонкова, С. Лебедева, А. Несмеянова, П. Ребиндера, членов-корреспондентов АН СССР Г. Борескова, Б. Сотскова, В. Сифорова, многих других учёных и инженеров. Такие университеты могут быть созданы в любом городе. И кому, как не самим изобретателям, надо бы, отрешившись от кустарщины, келейности, инертности, стать застрельщиками интересного, большого и — не будем бояться громких слов — государственного дела!
      Лишь во всеоружии знаний пристало уважающему себя исследователю поднимать руку на грандиозное научное наследие предков. А что в науке нет окаменевших, раз и навсегда установленных истин, — кто же в этом сомневается?
      Механика Ньютона, разумеется, также не исключение из общего правила. Не далее как в начале 1963 года, в разгар диновской эпопеи, была официально засвидетельствована существенная поправка к закономерностям, установленным ещё Ньютоном.
      Что же это за поправка? Неужто теория Дэвиса, предложившего «четвёртый закон механики»?
      «Наука — череда последовательных приближений к познанию реальности, причём количество таких постепенно сокращающихся шагов бесконечно велико, хотя и имеет предел — абсолютную истину.
      Для студента-первокурсника физика — очень ясный предмет: факты хорошо известны, соотношения выражены чёткими формулировками, не оставляющими места для разнотолков и сомнений. Проходит не менее трёх лет в аспирантуре, пока, наконец, зарождающийся учёный не прозревает: здание науки, такое стройное и монументальное издали, выглядит растрескавшимся и оседающим сооружением, опирающимся на зыбучие пески непрестанно меняющейся теории. Нет ничего такого, что было бы известно с абсолютной достоверностью. Просто одни вещи более вероятны, чем другие. Теории и законы лишь частично подтверждаются гипотезами, которые сами ждут, когда им на смену придут более совершенные, но опять-таки частично подтверждённые гипотезы. Если мы что-либо и знаем точно о любой теории в современной физике, так это то, что она либо ошибочна, либо по меньшей мере неполна. Рано или поздно кто-то предложит новую, более обобщённую концепцию, где прежняя останется на правах частного случая».
      Так начинает свою статью доктор Уильям О. Дэвис, полковник в отставке, бывший сотрудник научно-исследовательской лаборатории в атомном центре Лос-Аламос, ныне директор по научной части крупной нью-йоркской корпорации. Бьющий в нос скепсис, скорее даже пессимизм во взглядах на научный прогресс не помешал автору статьи без тени сомнения, без самомалейшего вопросительного знака, прямо-таки по-солдатски лихо начертать в заголовке три коротких слова, которые способны сразить наповал даже видавшего виды физика: «Четвёртый закон движения».
 
Три грации считались в древнем мире.
Родились вы… Всё ж три, а не четыре!
 
      Так подтрунивал Пушкин над претензиями одной из своих современниц. Но бравому полковнику не до шуток.
      Классическая физика знала три закона движения.
      Вот как сформулированы они у самого Ньютона в его «Математических началах натуральной философии».
      Первый: всякое тело продолжает удерживаться в своём состоянии покоя или равномерного прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние.
      Короче — инерция.
      Второй закон: всякая сила, действующая на тело, сообщает последнему ускорение, прямо пропорциональное величине силы и обратно пропорциональное массе тела.
      В школьных учебниках это записывается формулой: сила равна массе, помноженной на ускорение.
      Закон третий: действию всегда есть равное и обратное по направлению противодействие.
      Вот и всё. А теперь пусть наука узнает его, Дэвиса, четвёртый! Такого решительного вторжения в ньютонианское миропонимание история не припомнит со времён создания теории относительности и квантовой механики. Откроем маленький секрет: статья Дэвиса напечатана в том же журнале «Аналог», где и статья Кемпбелла, только два года спустя — в августе 1962 года. Но учёный есть учёный, с какой бы трибуны он ни обращался к аудитории со своими идеями. Так что предоставим слово самому Дэвису.
      Прочность материалов, говорит Дэвис, зависит от скорости, с какой они деформируются. Баллистика изобилует примерами, когда снаряды продолговатой формы глубоко проникали в мишень благодаря тому, что действовали на неё на манер отбойного молотка. Объяснить подобные эффекты с позиций одной лишь ньютоновской механики трудно.
      Исследуя ударные процессы в прессах для бумаги и текстиля, Дэвис обратил внимание, что резкое изменение ускорения сопряжено с интересными явлениями. (Здесь следует, пожалуй, напомнить, что ускорение — это скорость, с какой изменяется скорость движения. Если скорость тела нарастает равномерно, значит ускорение остаётся постоянным. Но оно может и меняться, тогда скорость будет получать с каждой секундой уже не одинаковые, а всё большие или, наоборот, всё меньшие надбавки. Тормозиться тело может тоже как равномерно, так и неравномерно.)
      «Интерес к этим вопросам был подогрет дискуссией вокруг машины Дина, начатой Дж. Кемпбеллом на страницах этого журнала в 1960 году. Мои (более ранние) исследования привели к гипотезе, что действие этой машины, если бы она работала, можно в какой-то степени объяснить влиянием скорости, с какой изменяется ускорение. Настоящая статья не ставит своей основной целью объяснить действие «безреактивных» аппаратов, но, безусловно, имеет отношение к оценке устройств этого типа».
      Когда ускорение остаётся неизменным или его вообще нет, продолжает Дэвис, системы тел достаточно хорошо описываются законами Ньютона. Трудности возникают лишь в условиях, когда ускорение начинает изменяться.
      Ключевым понятием в дэвисовском анализе динамических систем служит одновременность. Законы движения предполагают строгую одновременность действия и противодействия. Иначе говоря, если сила, с которой масса № 1 действует на массу № 2, внезапно изменилась, то и сила воздействия массы № 2 на массу № 1 должна измениться в тот же миг. Так считал Ньютон. Эйнштейн, однако, доказал, что условие одновременности в ньютоновском понимании невыполнимо для тел, разделённых дистанциями астрономического размера, ибо изменения в поле тяготения не могут распространяться быстрее света, а скорость света ограниченна, хотя и чудовищно велика — 300 тысяч километров в секунду. Стало быть, две звезды не могут взаимодействовать мгновенно. Потребуется некоторое время (иногда это миллиарды лет), пока гравитационный импульс распространится от одной звезды к другой. Эта закономерность справедлива и для небольших тел, хотя вскрыть её практически невозможно: настолько ничтожны земные расстояния для скорости 300 тысяч километров в секунду. Понятно, мол, почему ускользнула она от проницательнейшего взгляда Ньютона.
      Тем не менее Дэвис узрел неодновременность действия и противодействия и на Земле. «Рассмотрим, например, стальной стержень длиной в метр. Попытаемся сдвинуть его, толкнув с торца. Тотчас же вдоль стержня побежит импульс в виде волны сжатия. Скорость волны около 5000 метров в секунду. Дойдя до противоположного конца стержня, волна отразится, чтобы с той же скоростью возвратиться к точке, где была приложена сила. И до тех пор, пока волна не вернулась, то есть в течение четырёх десятитысячных долей секунды, стержень и не подумает двигаться, как мы ожидаем этого в соответствии со вторым законом Ньютона! Независимо от величины приложенной силы он не подчинится закону раньше, чем через указанный срок.
      Полковник Джон П. Стапп, хирург военно-воздушных сил США, подвергал себя действию перегрузок, чтобы оценить опасность, которой подвергается пилот при катапультировании. Он нашёл, что масштабы повреждений, причинённых людям и, оборудованию, зависят от скорости изменения ускорения не меньше, чем от величины самого ускорения. Более того, в наши дни военная авиация устанавливает разумные пределы не только для ускорения, но и для скорости изменения ускорения.
      Так вот, чтобы раскрыть загадку аномалий, вызванных резкими изменениями ускорения, логично постулировать, что существует сила, пропорциональная скорости изменения ускорения, равно как и ньютоновская сила, пропорциональная самому ускорению».
      Эту добавочную силу Дэвис включает в уравнение второго закона механики в виде дополнительного слагаемого. Далее следует решение дифференциального уравнения третьего порядка; из него автор выводит целый ряд следствий, формулируя четвёртый закон механики, а попутно и четвёртый закон термодинамики.
      Один из выводов касается изобретения Дина, вернее даже, как говорит Дэвис, «целого ряда безреактивных машин, которые демонстрировались в последние годы». Дескать, варьируя длительность паузы между действием и противодействием в механизме вибратора, рано или поздно удастся подобрать такой режим, когда при прыжке аппарата кверху добавочная сила, обусловленная изменением ускорения, будет всегда больше, чем при падении вниз. Короче, машина Дина обретёт постоянную подъёмную силу за счёт вращения своих эксцентриков, а изобретатель получит, наконец, долгожданную возможность вознестись в небо над равнодушным Вашингтоном…
      «Если устройство описанного типа работает, — оговаривается Дэвис, — что же станется с законами сохранения энергии и количества движения? Примерно сто лет назад искренне верили, будто переменный ток не способен производить полезную работу, ведь средний ток равен нулю! Потом выяснилось, что уравновешивающие друг друга токи не являются равными и противоположно направленными одновременно. Стало быть, работа совершаться может. Чтобы отстоять закон сохранения движения, на подмогу было призвано излучение. Попытаемся и мы прибегнуть к такому же приёму.
      Если существует сила, пропорциональная скорости изменения ускорения, то логично допустить, что существует особого вида энергия — назовём её виртуальной. (Конечно, если ускорение постоянно, то добавочный член, описывающий виртуальную энергию, равен нулю, и уравнение немедленно становится ньютоновским.)
      А теперь вспомним: движущийся электрический заряд создаёт магнитное поле. Эйнштейн предположил, что движущийся «гравитационный заряд» (масса) тоже образует особое поле, подобное магнитному. Предвидимая напряжённость такого «инерционного» поля исчезающе мала при небольших скоростях — во всяком случае, много меньше, чем у обычного поля тяготения, создаваемого массой и подобного электростатическому. Волны, если они действительно возникают при наложении друг на друга инерционного и гравитационного полей (подобно тому как электромагнитное излучение вызывается взаимодействием электрического и магнитного полей), должны быть столь неощутимыми, что ими можно пренебречь в любой реальной системе.
      Я полагаю, однако, более целесообразным постулировать существование такого инерционного поля, которое обусловлено не просто скоростью массы, а её ускорением. Тогда гравитационным зарядом можно представить себе не просто движущуюся массу, а количество движения (произведение массы на скорость).
      После всего сказанного легко представить себе совершенно новый вид излучения. Если электрон, когда его ускоряют, испускает электромагнитное излучение, то масса, подвергнутая толчкам, ударам, вибрации с изменением ускорения, породит гравитационно-инерционное излучение. И если излучение, предсказанное Эйнштейном, настолько слабо, что не поддаётся регистрации, то излучение, описанное здесь, должно ясно проявлять себя при соответствующих условиях. В настоящее время в наших лабораториях ставятся опыты, которые, как мы надеемся, в ближайшем будущем подтвердят эту догадку».
      «Четвёртый закон» — далеко не первый и, может быть, даже не четвёртый казус в ряду попыток ревизовать Ньютона.
      Ещё французские математики XVIII века Клеро и Даламбер предлагали ввести в формулу закона всемирного тяготения добавочный член; им нужно было как-то объяснить загадочные смещения лунного перигея. Знаменитый естествоиспытатель Бюффон возражал против неоправданных посягательств на ньютоновскую формулу. Не прошло и четырёх лет, как сконфуженный Клеро сам же дал верное истолкование странностям нашей космической соседки на основе тех же законов Механики, в справедливости которых сомневался.
      Лет через сто снова начались покушения на закон всемирного тяготения. На этот раз астрономов не устраивали расхождения между действительной орбитой Урана и вычисленной по ньютоновской формуле. Иначе подошли к делу Леверье и Адаме. Не вызваны ли возмущения орбиты Урана соседством другого массивного тела? Опираясь на законы механики, они предсказали существование ещё не открытой планеты и точно назвали место, где следовало ожидать её появления. Так в 1846 году был открыт Нептун. Посрамлённые скептики стали свидетелями нового триумфа классической механики.
      Спустя почти сто лет, в 1933 году, учёные снова недоуменно развели руками: при бета-распаде, переходя из одного совершенно определённого энергетического состояния в другое, столь же определённое, атомное ядро выстреливало электроны с самыми различными значениями энергии.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18