Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (ГА)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ГА) - Чтение (стр. 32)
Автор: БСЭ
Жанр: Энциклопедии

 

 


Гальванокаустика

Гальванока'устика(от гальвано ... и греч. kaustikуs - жгучий), гальванотермия, термокаустика, электрокаустика, прижигание тканей тела особыми металлическими петлями разной формы, т. н. гальванокаутерами, накаливаемыми проводимым через них электрическим током. Г. применяют для разрушения и удаления небольших доброкачественных опухолей, для разделения сращений и спаек, образующихся между тканями и органами в процессе болезни, для остановки кровотечения из мельчайших кровеносных сосудов - капилляров, выжигания татуировок и т. п. Источниками тока служат гальванические или аккумуляторные батареи либо используется трансформированный до напряжения 2-4 впри силе 20 маток промышленно-осветительной сети. См. также Электрокоагуляция .

  В. Г. Ясногородский.

Гальваномагнитные явления

Гальваномагни'тные явле'ния, совокупность явлений, связанных с действием магнитного поля на электрические (гальванические) свойства твёрдых проводников (металлов и полупроводников), по которым течёт ток. Наиболее существенны Г. я. в магнитном поле Н, перпендикулярном току (поперечные Г. я.). К ним относится эффект Холла - возникновение разности потенциалов (эдс Холла V h) в направлении, перпендикулярном полю Ни току j( j - плотность тока), и изменение электрического сопротивления проводника в поперечном магнитном поле. Разность Drмежду сопротивлением rпроводника в магнитном поле и без поля часто называется магнетосопротивлением.

  Мерой эффекта Холла служит постоянная Холла:

 

  Здесь d- расстояние между электрическими контактами, с помощью которых измеряют эдс Холла. Постоянная Холла в широких пределах не зависит от величины магнитного поля (а для металлов и от температуры). Линейная зависимость V Hот магнитного поля Ниспользуется для измерения магнитных полей (см. Магнитометр ).

  В электронных проводниках, в которых ток переносится «свободными» электронами ( электронами проводимости ), согласно простейшим представлениям, постоянная Холла выражается через число электронов проводимости nв см 3. R= 1/ nec( е -заряд электрона, с - скорость света). Поэтому измерение Rслужит одним из основных методов оценки концентрации электронов проводимости nв электронных проводниках. У электронных проводников Rимеет знак минус. У полупроводников с дырочной проводимостью и у некоторых металлов постоянная Холла имеет знак плюс, соответствующий положительно заряженным носителям тока - дыркам (см. Твёрдое тело ). Т. к. эдс Холла меняет знак при изменении направления магнитного поля на обратное, то эффект Холла называется нечётным Г. я.

  Относительное изменение сопротивления в поперечном поле ( Dr/r) ^, в обычных условиях (при комнатной температуре) очень мало: у хороших металлов ( Dr/r) ^~ 10 -4при H~ 10 4 э. Важным исключением является висмут (Bi), у которого ( Dr/r) ^» 2 при Н= 3 · 10 4 э. Это позволяет его использовать для измерения магнитного поля. У полупроводников изменение сопротивления несколько больше, чем у металлов: ( Dr/r) ^» 10 -2-10 -1и существенно зависит от концентрации примесей в полупроводнике и от температуры. Например, у достаточно чистого германия ( Dr/r) ^» 3 при Т= 90 К и H= 1,8 · 10 -4 э.

  Понижение температуры и увеличение магнитного поля приводят к увеличению ( Dr/r) ^. П. Л. Капица (1929), используя магнитные поля в несколько сот тысяч эи сравнительно низкие температуры (температура жидкого азота), обнаружил существенное увеличение сопротивления большого числа металлов и показал, что в широком интервале магнитных полей ( Dr/r) ^линейно зависит от магнитного поля (закон Капицы).

  В слабых магнитных полях ( Dr/r) ^пропорционально H 2. Коэффициент пропорциональности между ( Dr/r) ^и H 2положителен, т. е. сопротивление растет с увеличением магнитного поля. Изменение сопротивления в магнитном поле называется чётным Г. я., т. к. (Dr/r) ^не изменяет знак при изменении направления поля Нна обратное.

  Так как сопротивление весьма чувствительно к качеству образца (к количеству примесей и дефектов кристаллической решётки), а также к температуре, то каждое измерение приводит к новой зависимости rот Н. Имеющиеся экспериментальные данные для металлов удобно описывать, выразив ( Dr/r) ^в виде функции от Н эф= Hr 300/r,где r 300- сопротивление данного металла при комнатной температуре ( Т= 300К), а r- при температуре эксперимента. При этом различные данные, относящиеся к одному металлу, укладываются на одну кривую (правило Колера).

  Основная причина Г. я. -искривление траекторий носителей тока (электронов проводимости и дырок) в магнитном поле (см. Лоренца сила ) .Траектория носителей в магнитном поле может существенно отличаться от траектории свободного электрона в магнитном поле - круговой спирали, навитой на магнитную силовую линию. Разнообразие траекторий носителей тока у различных проводников - причина разнообразия Г. я., а зависимость траектории от направления магнитного поля - причина анизотропии Г. я. в монокристаллах. Мерой влияния магнитного поля на траекторию электрона является отношение длины свободного пробегаlэлектрона к радиусу кривизны его траектории в поле Н: r н = cp/eH( р -импульс электрона). По отношению к Г. я. магнитное поле считают слабым, если Н Ј Н о= el/cp,и сильным, если Н³ Н 0.

 При комнатных температурах для различных металлов и хорошо проводящих полупроводников H 0~10 5-10 7 э,для плохо проводящих полупроводников Н 0~10 8-10 9э. Понижение температуры увеличивает длину пробега lи потому уменьшает значение H 0.Это позволяет, используя низкие температуры и обычные магнитные поля (~10 4э), осуществлять условия, соответствующие сильному полю Н>> Н 0.

 Измерение сопротивления монокристаллических образцов металлов в сильных магнитных полях - один из важных методов изучения металлов. Исследуется зависимость сопротивления от величины магнитного поля и его направления относительно кристаллографических осей. Теория Г. я. показала, что зависимость сопротивления от поля Нсущественно связана с энергетическим спектром электронов. Резкая анизотропия сопротивления в сильных магнитных полях (у Au, Ag, Cu, Sn и др.) означает существ, анизотропию Ферми поверхности.И, наоборот, небольшая анизотропия сопротивления в магнитном поле означает практическую изотропию поверхности Ферми. При этом, если с ростом магнитного поля для всех направлений rне стремится к насыщению (Bi, As и др.), то электроны и дырки содержатся в проводниках в равных количествах. Стремление сопротивления к насыщению означает, что преобладают либо электроны, либо дырки (тип носителей может быть установлен по знаку постоянной Холла).

  Наряду с поперечными Г. я. наблюдается также небольшое изменение сопротивления металлов в магнитном поле, параллельном току I: ( Dr/r) ||, наз. продольным гальваномагнитным эффектом. В сильных магнитных полях обнаруживаются квантовые эффекты, проявляющиеся в немонотонной (осциллирующей) зависимости постоянной Холла и сопротивления от поля Н.

 При изучении Г. я. в тонких плёнках и проволоках имеет место зависимость ( Dr/r) ^и ( Dr/r) ||от размеров и формы образца (размерные эффекты). С ростом Нпри r nЈ d( d -наименьший размер образца) эта зависимость исчезает. В ферромагнитных металлах и полупроводниках ( ферритах ) Г. я. обладают рядом специфических особенностей, обусловленных существованием самопроизвольной намагниченности в отсутствие магнитного поля. Например, эдс Холла в ферромагнетиках зависит не только от среднего поля Нв образце, но и от намагниченности, сопротивление в слабых полях иногда убывает (см. Ферромагнетизм , Холла эффект ) .

  Лит.:Лифшиц И. М., Каганов М. И., Некоторые вопросы электронной теории металлов, «Успехи физических наук», 1965, т. 87, в. 3; 3айман Дж., Принципы теории твердого тела, пер. с англ., М., 1966

  М. И. Каганов.

Гальванометр

Гальвано'метр(от гальвано... и ...метр ) ,высокочувствительный электроизмерительный прибор, реагирующий на весьма малую силу тока или напряжение. Наиболее часто Г. используют в качестве нуль-индикаторов, т. е. устройств для индикации отсутствия тока или напряжения в электрической цепи. Применяют Г. и для измерений малых силы тока и напряжения, определив предварительно постоянную прибора (цену деления шкалы). Различают Г. постоянного и переменного тока. Первые Г. постоянного тока были созданы в 20-х годах 19 в. и по принципу действия являлись приборами магнитоэлектрической системы (см. Магнитоэлектрический прибор измерительный). Они состояли из магнитной стрелки, подвешенной на тонкой нити и помещенной внутри катушки из проволоки. При отсутствии тока в катушке стрелка устанавливается по магнитному меридиану данного места. Появление тока вызывает отклонение стрелки от первоначального положения. В 19 в. было создано много конструктивных разновидностей Г. с подвижной магнитной стрелкой и они широко применялись при научных исследованиях электромагнитных явлений. Так, например, в 1886 Г. Кольрауш, пользуясь таким Г., определил с высокой точностью электрохимический эквивалент серебра.

  В 1881 французский учёный Ж. А. д'Арсонваль создал Г. с подвижной катушкой, в котором подвижным элементом служил проводник с током, помещенный в поле постоянного магнита. В зависимости от конструкции подвижной части такие Г. подразделяют на Г. рамочные (подвижная часть - рамка с несколькими витками проволоки), петлевые (подвижная часть - петля из одного витка проволоки) и струнные (подвижная часть - провод, натянутый как струна). В качестве примера на рис. 1 показано устройство рамочного Г. В поле постоянного магнита 1расположена рамка 2,на оси которой укреплена стрелка-указатель 3.Протекающий по виткам рамки ток взаимодействует с полем постоянного магнита и создаёт вращающий момент, вызывающий поворот подвижной части и соответственно перемещение стрелки относительно шкалы. Для повышения чувствительности Г. на подвижной части вместо стрелки указателя укрепляют миниатюрное зеркальце оптического отсчётного устройства. На рис. 2 показан зеркальный Г. с оптическим устройством. Луч света от осветителя 1 падает на зеркальце 3 и, отражаясь от него, попадает на шкалу 4.Шкалу устанавливают на расстоянии 1,5-2 мот Г., поэтому даже весьма малые угловые перемещения зеркальца вызывают заметные отклонения светового пятна на шкале от его нулевого положения. Разновидностью являются Г. со световым отсчётом, у которых осветитель и шкала размещены в одном корпусе с механизмом Г. В этом случае для получения достаточной длины светового луча применяют многократное отражение его от нескольких неподвижных зеркал.

  При прохождении по обмотке Г. кратковременного импульса тока получается баллистический отброс подвижной части из нулевого положения с последующим возвращением к нему после нескольких колебаний. Если длительность импульса значительно меньше периода собственных колебаний подвижной части, то первое наибольшее отклонение указателя пропорционально количеству электричества, перенесённого импульсом. Для измерения количества электричества при сравнительно продолжительных импульсах изготовляют Г. баллистические, у которых момент инерции подвижной части значительно больше, чем у обычных Г. С помощью баллистических Г. можно измерять количество электричества при импульсах продолжительностью до 2 сек.

 Для обнаружения малых значений силы переменного тока или напряжений применяют Г. вибрационные переменного тока и с преобразователями переменного тока в постоянный. Вибрационные Г. по принципу действия идентичны Г. постоянного тока и отличаются от них только тем, что имеют очень малый момент инерции подвижной части. Устройство вибрационного Г. с подвижным магнитом показано на рис. 3 . Подвижная пластинка 3из магнитомягкой стали помещается между полюсами постоянного магнита 1в поле электромагнита 2 (между полюсами nи m) .Пластинка 3укрепляется вместе с маленьким зеркальцем на бронзовой ленточке. Измеряемый переменный ток, проходя по обмотке 5электромагнита 2, создаёт переменное магнитное поле, накладывающееся на постоянное поле постоянного магнита 1. Результирующее магнитное поле меняет своё направление с частотой переменного тока и вызывает колебания пластинки 3; при этом чёткое изображение на шкале 7 световой щели 6размывается в световую полоску. Ширина полоски пропорциональна силе переменного тока в обмотке электромагнита 2. Чувствительность вибрационного Г. получается максимальной, когда частота собственных колебаний подвижной части Г. равна частоте переменного тока, поэтому все вибрационные Г. имеют приспособления для изменения частоты собственных колебаний в целях настройки подвижной части в резонанс с исследуемым переменным током. Вибрационные Г. изготовляются для работы при частотах не свыше 5 кгц.

  Термогальванометр - Г. переменного тока с термопреобразователем, имеющий механизм магнитоэлектрического Г. с подвижной рамкой в виде одного витка. Половины этого витка выполнены из различных металлов и образуют термопару . Вблизи одного из спаев расположен нагреватель, к которому подводят измеряемый переменный ток. Возникающий в рамке термоток отклоняет её от нулевого положения. Этот Г. может применяться для работы при частотах свыше 5 кгц.

  Основной характеристикой Г. является чувствительность или величина, ей обратная, - постоянная Г. Современные Г. постоянного тока серийного производства позволяют обнаруживать токи силой около 5·10 -11 аи напряжения порядка 5·10 -8 в. Постоянные вибрационных Г. переменного тока имеют порядок 1·10 -1 а/ деление.

  Лит.:Черданцева З. В., Электрические измерения, 3 изд., М. - Л., 1933; Карандеев К. Б., Гальванометры постоянного тока, Львов, 1957; Арутюнов В. О., Электрические измерительные приборы и измерения, М., 1958.

  Н. Г. Вострокнутов.

Рис. 3. Вибрационный гальванометр: 1 - постоянный магнит; 2 - электромагнит; 3 - подвижная пластинка; 4 - бронзовая ленточка; 5 - обмотка для измеряемого тока; 6 - щель оптической системы; 7 - шкала.

Рис. 1. Рамочный гальванометр: 1 - постоянный магнит; 2 - рамка; 3 - стрелка-указатель; 4 - выводы рамки; 5 - шкала.

Рис. 2. Зеркальный гальванометр: 1 - осветитель (лампа); 2 - гальванометр; 3 - зеркальце; 4 - шкала.

Гальванопластика

Гальванопла'стика(от гальвано... и греч. plastike - ваяние), получение точных металлических копий методом электролитического осаждения металла на металлическом или неметаллическом оригинале. См. Гальванотехника .

Гальваноскоп

Гальваноско'п(от гальвано ... и греч. skopйo - смотрю) простейший стрелочный прибор для обнаружения тока в цепи и определения его направления, прообраз гальванометра .

Гальваностегия

Гальваносте'гия(от гальвано... и греч. stйgo - покрываю), нанесение металлических покрытий на поверхность металличческих изделий методом электролитического осаждения. См. Гальванотехника .

Гальваностереотипия

Гальваностереоти'пия(от гальвано... и стереотипия ), способ изготовления копий форм высокой печати (стереотипов) методом гальванопластики . Г. впервые в мире (1839) была применена в Экспедиции заготовления государственных бумаг в Петербурге для размножения печатных форм. Она включает: матрицирование, собственно электролитическое осаждение металла (обычно меди) на матрицу для получения печатной формы (когда осаждаемый слой металла достигает нужной толщины - 0,25-0,30 мм, его отделяют от матрицы) и отделку. Г. даёт более точное воспроизведение оригинальной (исходной) формы, чем обычный литой стереотип. Износоустойчивость медных гальваностереотипов - до 200-250 тыс. оттисков (цинковых -25-30 тыс. оттисков), а после дополнительного покрытия их тонким слоем железа или никеля - до миллиона оттисков. Гальваностереотипы применяются преимущественно для печатания книг и журналов с большим количеством иллюстраций, а также многотиражных цветных репродукций. См. также Гальванотехника .

Гальванотаксис

Гальванота'ксис(от гальвано ... и греч. tбxis - расположение, порядок), активное движение животных (инфузории и др растительных организмов (вольвокс и др.), а также микробов (кишечная палочка и др.) и клеточных органелл (пластид ориентированное электрическим током, проявляется в водной среде или в почве в зависимости от плотности тока, его напряжения, характера растворённых в воде веществ и реакции среды организмы могут направляться к аноду (положительный Г.) или к катоду (отрицательный Г.). Основой Г. считают хемотаксис   на сдвиг концентрации  катионов и анионов, возникающий под влиянием электрического тока.

Гальванотерапия

Гальванотерапи'я, физиотерапевтический метод, то же, что гальванизация .

Гальванотехника

Гальваноте'хника, область прикладной электрохимии , охватывающая процессы электролитического осаждения металлов на поверхность металлических и неметаллических изделий. Г. включает: гальваностегию - получение на поверхности изделий прочно сцепленных с ней тонких металлических покрытий и гальванопластику - получение легко отделяющихся, относительно толстых, точных копий с различных предметов, т. н. матриц. Открытие и техническая разработка Г. принадлежат русскому учёному Б. С. Якоби , о чём он доложил 5 октября 1838 на заседании Петербургской АН.

  Г. основана на явлении электрокристаллизации - осаждении на катоде (покрываемом изделии в гальваностегии или матрице в гальванопластике) положительно заряженных ионов металлов из водных растворов их соединений при пропускании через раствор постоянного электрического тока (см. Электролиз ). Количественно гальванотехнические процессы регулируются по законам Фарадея с учётом побочных процессов, которые сводятся чаще всего к выделению на поверхности покрываемых изделий наряду с металлом водорода; качественно - типом и составом электролита, режимом электролиза, т. е. плотностью тока, а также температурой и интенсивностью перемешивания. Различают электролиты на основе простых или комплексных соединений. Первые значительно проще, дешевле и при интенсивном перемешивании (чаще воздушном) допускают применение высоких плотностей тока, что ускоряет процесс электролиза. Так, например, в гальваностегии при покрытии изделий простой конфигурации электролит на основе сернокислого цинка в присутствии коллоидных добавок допускает плотность тока до 300 а/м 2, а при интенсивном воздушном перемешивании - до 30 ка/м 2. В гальванопластике растворы простых солей, чаще сернокислых, обычно применяют без введения каких-либо органических добавок, т. к. в толстых слоях эти добавки отрицательно сказываются на механических свойствах полученных копий. Применяемая плотность тока ниже, чем в гальваностегии; в железных гальванопластических ваннах она не превышает 10-30 а/м 2, в то время как при железнении (гальваностегия) плотность тока достигает 2000-4000 а/м 2. Гальванические покрытия должны иметь мелкокристаллическую структуру и равномерную толщину на различных участках покрываемых изделий - выступах и углублениях. Это требование имеет в гальваностегии особенно важное значение при покрытии изделий сложной конфигурации. В этом случае используют электролиты на основе комплексных соединений или электролиты на основе простых солей с добавками поверхностно-активных веществ. Примером благоприятного влияния поверхностно-активных веществ на структуру покрытия может служить процесс осаждения олова из сернокислого оловянного электролита; без добавок поверхностно-активных веществ на поверхности покрываемых изделий выделяются изолированные кристаллы, напоминающие ёлочную мишуру и не представляющие никакой ценности как покрытие. При введении в электролит фенола , крезола или др. соединения ароматического ряда вместе с небольшим количеством коллоида (клей, желатина) образуется плотное, прочно сцепленное покрытие с вполне удовлетворительной структурой. Из щелочных оловянных электролитов, в которых олово находится в виде отрицательного комплексного иона (SnO 3) 4-, при температуре 65-70° С без каких-либо поверхностно-активных веществ получаются хорошо сцепленные мелкокристаллические покрытия. Причина такого различия в поведении кислых и щелочных электролитов заключается в том, что в первых простые ионы двухвалентного олова в отсутствие поверхностно-активных веществ разряжаются без сколько-нибудь заметного торможения (поляризации), а в щелочных электролитах олово находится в виде комплексных ионов, разряжающихся со значительным торможением. Для цинкования изделий сложной формы применяют щёлочно-цианистые электролиты или др. комплексные соли цинка. Для кадмирования изделий применяются, как правило, цианистые электролиты. То же можно сказать про серебрение, золочение, латунирование.

  Существенную роль в гальванотехнических процессах играют аноды, основное назначение которых - восполнять в электролите ионы, разряжающиеся на покрываемых изделиях. Аноды не должны содержать примесей, отрицательно влияющих на внешний вид и структуру покрытий. В некоторых случаях анодам придают форму покрываемых изделий. Процессы хромирования, золочения, платинирования, родирования и др. протекают с нерастворимыми анодами из металла или сплава, устойчивого в данном электролите. Корректирование электролита в целях сохранения постоянства его состава осуществляется периодическим введением солей или др. соединений выделяющегося металла.

  Все процессы как гальванопластики, так и гальваностегии протекают в гальванических ваннах. Часто гальванической ванной называют также состав находящегося в ней электролита. Материалом ванны в зависимости от её размеров и степени агрессивности электролита могут служить: керамика, эмалированный чугун, сталь, футерованная свинцом или винипластом, органическое стекло и др. Ёмкость ванн колеблется от долей м(для золочения) до 10 ми более. Различают ванны: стационарные (покрываемые изделия в которых неподвижны), полуавтоматические (изделия вращаются или перемещаются по кругу или подковообразно) и агрегаты, в которых автоматически осуществляются загрузка, выгрузка и транспортировка изделий вдоль ряда ванн. Постоянный ток для электролиза получают главным образом от селеновых и кремниевых выпрямителей, плотность тока регулируется при помощи многоступенчатого трансформатора.

  Гальваностегия применяется шире, чем гальванопластика; её цель придать готовым изделиям или полуфабрикатам определённые свойства: повышенную коррозионную стойкость (цинкованием, кадмированием, лужением, свинцеванием), износостойкость трущихся поверхностей (хромированием, железнением). Г. применяется для защитно-декоративной отделки поверхности (достигается никелированием, хромированием, покрытием драгоценными металлами). По сравнению с издавна применявшимися методами нанесения покрытий (например, погружением в расплавленный металл) гальваностегический метод имеет ряд преимуществ, особенно в тех случаях, когда можно ограничиться незначительной толщиной покрытия. Так, процесс покрытия оловом жести для пищевой тары электролитическим методом вытесняет старый, горячий метод; в США электролитически лужёная жесть составляет более 99% от всей продукции (1966). Расход олова при этом сокращён во много раз главным образом за счёт дифференциации толщины оловянного покрытия от 0,2-0,3 до 1,5-2 мкм.в зависимости от степени агрессивности пищевой сред. Все покрытия в гальваностегии должны быть прочно сцеплены с покрываемыми изделиями; для многих видов покрытий это требование должно быть удовлетворено при любой степени деформации основного металла. Прочность сцепления между покрытием и основой обеспечивается надлежащей подготовкой поверхности покрываемых изделий, которая сводится к полному удалению окислов и жировых загрязнений путём травления или обезжиривания. При нанесении защитно-декоративных покрытий (серебряных, золотых и т. п.) необходимо удалить с поверхности изделий оставшуюся от предыдущих операций шероховатость шлифованием и полированием.

  Технологический прогресс в гальваностегии развивается по пути непосредственного получения блестящих покрытий, не требующих дополнительной полировки; прогресс в области оборудования заключается в разработке и внедрении механизированых и автоматизированных агрегатов для механической подготовки поверхности и нанесения покрытий, включая все вспомогательные операции, вплоть до нанесения покрытий на непрерывную полосу с последующей штамповкой изделий (например, автомобильные кузовы, консервная тара и др.). Ведущими отраслями промышленности, в которых гальваностегия имеет значит, удельный вес, являются автомобилестроение, авиационная, радиотехническая и электронная промышленность и др.

  Гальванопластика отличается от гальваностегии главным образом методами подготовки поверхности обратных изображений копируемых предметов-матриц и большей толщиной наращиваемого металла (в десятки и сотни раз). Матрицы бывают металлические и неметаллические. Преимущества металлических матриц заключаются в более лёгкой подготовке поверхности (чаще методом оксидирования) и возможности снятия большего количества копий. В качестве промежуточного поверхностного слоя на металлическую матрицы обычно наносят тонкую плёнку серебра (десятые доли мкм) или никеля (до 2 мкм) .Оба эти металла прекрасно оксидируются при трехминутном погружении в 2-3%-ный раствор бихромата и обеспечивают лёгкий съём наращенного слоя. Перспективно применение в качестве материала для металлических матриц оксидированного алюминия. Сообщение электрической проводимости лицевой поверхности неметаллических матриц обычно осуществляется путём её графитирования. Для этой цели свободный от примесей мелкочешуйчатый графит наносят на поверхность матрицы мягкими волосяными щётками. Для крупных и сложных по рельефу предметов, например статуй, барельефов и т. п., наиболее употребительны гипсовые и гуттаперчевые матрицы. При изготовлении матриц подобные предметы делят на участки. Полученные гальванопластически прямые копии соединяют пайкой с таким расчётом, чтобы швы не исказили изображения.

  Наиболее распространена медная гальванопластика, меньше - железная и никелевая. Основная область применения гальванопластики - полиграфия. (См. также Гальваностереотипия.) Гальванопластика широко применяется также при изготовлении матриц грампластинок, для производства волноводов и др.

  Лит.:Якоби Б. С., Работы по электрохимии, М.- Л., 1957; Лайнер В. И., Современная гальванотехника, М., 1967; Modern electroplating, ed. A. G. Gray, N. Y.- L., 1953; Modern electroplating, ed. F. A. Lowenheim, 2 ed., N. Y.-L.-Sydney, 1963.

  В. И. Лайнер.

Гальванотропизм

Гальванотропи'зм(от гальвано...и греч. tropos - поворот, направление), изгибание растущих осевых органов растений (корней, побегов) или сидячих форм животных под влиянием прохождения через окружающую среду постоянного электрического тока. Как и при др. тропизмах,изгибание органа в направлении к аноду или катоду происходит вследствие ускорения или замедления роста одной из его сторон. Это определяется особенностями физиологии организма, плотностью тока в нём и сопутствующими факторами (освещение, температура, солевой состав среды, сроки воздействия и др.). Предполагается, что в основе Г. лежит реакция на сдвиг концентрации анионов и катионов в результате электролиза солей (см. Хемотропизм ) или вызванное электрическим током перемещение гормонов из одной части органа в другую.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54