Современная электронная библиотека ModernLib.Net

100 великих - 100 великих нобелевских лауреатов

ModernLib.Net / Биографии и мемуары / Мусский Сергей Анатольевич / 100 великих нобелевских лауреатов - Чтение (стр. 17)
Автор: Мусский Сергей Анатольевич
Жанр: Биографии и мемуары
Серия: 100 великих

 

 


С 1884 по 1919 год (когда его сменил на посту директора лаборатории Резерфорд) Томсон руководил лабораторией Кавендиша. За это время она превратилась в крупный мировой научный центр, в международную школу физиков. Многие ученики Томсона стали крупными учеными. Завершая в конце жизни книгу своих воспоминаний, Томсон перечислял среди своих бывших докторантов 27 членов Королевского общества, 80 профессоров, успешно работающих в 13 странах. Пятеро его учеников – Ч. Баркла, Г. Брэгг, Ч. Вильсон, Э. Резерфорд, О. Ричардсон – стали нобелевскими лауреатами.

В ноябре 1889 года Томсон познакомился с милой и изящной Розой-Элизабет Пэйджет, которая присутствовала на его демонстрационных опытах. Он посылал ей «пылкие записочки»: «Дорогая мисс Пэйджет, кажется, мне удалось найти для вас интересную тему, над которой вы могли бы успешно работать. Если вы сможете прийти в лабораторию после четырех, я объясню вам эту идею и покажу необходимые приборы. Искренне ваш Дж.Дж. Томсон».

2 января 1890 года они поженились. Иногда супруги давали открытые для широкой публики «визиты в лабораторию», где Роза-Элизабет руководила опытами в вечернем платье.

Сразу после избрания главой Кавендишской лаборатории Томсон приступил к исследованиям прохождения электрического тока через газы. В книге «Размышления и воспоминания» он писал, что не знал такого времени, когда бы не занимался газовым разрядом.

Вначале он совместно с Трелфоллом ставит эксперименты по изучению проводимости в азоте и озоне. Результаты этих исследований были опубликованы в 1886 году в «Трудах Королевского общества». В 1887 году он опубликовал работу «О диссоциации некоторых газов электрическим разрядом». Томсон изучал влияние давления и температуры на разряд, определял скорость распространения разряда, экспериментировал с сильно нагретыми газами, изучал сопротивление электролитов переменному току высокой частоты, исследовал безэлектродный разряд и разряд через перегретый пар.

В 1894 году Томсон приступил к исследованию катодных лучей. В трубке, сконструированной ученым, катодные лучи послушно притягивались к положительно заряженной пластинке и явно отталкивались от отрицательной. То есть вели себя так, как и полагалось потоку быстролетящих крошечных корпускул, заряженных отрицательным электричеством. Превосходный результат! Он мог, безусловно, положить конец всем спорам о природе катодных лучей. Но Томсон не считал свое исследование законченным. Определив природу лучей качественно, он хотел дать точное количественное определение и составляющим их корпускулам.

Томсон сразу стал использовать открытия Рентгена и Беккереля в своих исследованиях, и, как он вспоминал, эти открытия позволили производить многие эксперименты, которые до этого были невыполнимы. Вначале Томсон изучал действие рентгеновских лучей на разряд в газе. «К моему великому восторгу, – писал Томсон о рентгеновских лучах, – они делали газ проводником тока, даже если электрическая сила, приложенная к газу, была чрезвычайно мала… X-лучи, казалось, превращали газ в газообразный электролит».

«Вскоре из этих опытов были получены важные результаты, – пишет С.П. Кудрявцев. – Во-первых, Томсон обнаружил, что после прекращения действия лучей проводимость в газе еще сохранялась какое-то время и прекращалась после фильтрования газа через стекловату. Во-вторых, было выяснено, что для фильтрования не обязательно использовать стекловату, вполне достаточно подвергнуть газ действию электрических сил. В-третьих, было найдено нарастание силы тока при малых напряжениях в согласии с законом Ома, при больших напряжениях – отклонение от закона Ома и при некотором большом напряжении – наличие тока насыщения.

Из опытов также следовало, что после прекращения действия лучей в газе еще остаются заряженные частицы, которые и являются носителем тока. О том, что эти частицы отрицательно и положительно заряжены, говорил тот факт, что электрические силы прекращали остаточную проводимость, т е. отрицательно заряженные частицы осаждались на положительном электроде, а положительные – на отрицательном».

Окрыленный первым успехом, он сконструировал новую трубку: катод, ускоряющие электроды в виде колечек и пластинки, на которые можно было подавать отклоняющее напряжение. На стенку, противоположную катоду, он нанес тонкий слой вещества, способного светиться под ударами налетающих частиц. (Получился предок электронно-лучевых трубок, так хорошо знакомых нам в век телевизоров.)

Цель опыта Томсона заключалась в том, чтобы отклонить пучок корпускул электрическим полем и компенсировать это отклонение полем магнитным. Выводы, к которым он пришел в результате эксперимента, были поразительны. Во-первых, оказалось, что частицы летят в трубке с огромными скоростями, близкими к световым. А во-вторых, электрический заряд, приходившийся на единицу массы корпускул, был фантастически большим. Что же это были за частицы: неизвестные атомы, несущие на себе огромные электрические заряды, или крохотные частицы с ничтожной массой, но зато и с меньшим зарядом?

Далее он обнаружил, что отношение удельного заряда к единице массы есть величина постоянная, не зависящая ни от скорости частиц, ни от материала катода, ни от природы газа, в котором происходит разряд. Такая независимость настораживала. Похоже, что корпускулы были какими-то универсальными частицами вещества, составными частями атомов…

Томсон писал, что «постоянство значения – для ионов, составляющих катодные лучи, есть поразительный контраст изменчивости соответствующих величин для ионов, которые несут ток в электролитах… Когда мы рассматриваем электрический заряд, несомый ионом в катодных лучах, мы, принимая, что он равен по модулю заряду, несомому водородным ионом при электролизе, заключаем, что масса водородного иона должна быть в 770 раз больше массы иона в катодных лучах; следовательно, носитель отрицательного электричества в этих лучах должен быть очень малым по сравнению с массой водородного атома».

Этот результат ошеломил Томсона, и он стал его тщательно изучать, улучшил методику эксперимента с целью получения более точных значений массы частиц, испускаемых металлами под действием ультрафиолетового света, для частиц, испускаемых нагретыми металлами, и находит его таким же, как и для катодных частиц.

После долгих размышлений Томсон приходит к следующим заключениям:

1) «…атомы не неделимы, отрицательно заряженные частицы могут вылетать из них под действием электрических сил, удара быстро движущихся атомов, ультрафиолетового света или тепла»;

2) «…все эти частицы одинаковой массы и несут одинаковый заряд отрицательного электричества от любого рода атомов, и они являются составной частью всех атомов»;

3) «…масса этих частиц меньше однотысячной массы атома водорода».

29 апреля 1897 года в помещении, где уже более двухсот лет происходили заседания Лондонского королевского общества, состоялось выступление Томсона. Оно было встречено восторгом присутствующих. Еще бы! Атомы, наипервейшие кирпичики материи, перестали быть элементарными круглыми зернами, непроницаемыми и неделимыми, частицами без всякого внутреннего строения… Если из них могли вылетать отрицательно заряженные корпускулы, значит, и представлять собой атомы должны были какую-то сложную систему. Систему, состоящую из чего-то заряженного положительным электричеством и из отрицательно заряженных корпускул – электронов.

Название, некогда предложенное Стонеем для обозначения величины наименьшего электрического заряда – электрон, стало именем неделимого «атома электричества».

В 1904 году Томсон же и представил новую модель атома. Она представляла собой также равномерно заряженную положительным электричеством сферу, внутри которой вращались отрицательно заряженные корпускулы, число и расположение которых зависело от природы атома. Ученому не удалось решить общую задачу устойчивого расположения корпускул внутри сферы, и он остановился на частном случае, когда корпускулы лежат в одной плоскости, проходящей через центр сферы.

Томсон научил физиков управлять электронами, и в этом его основная заслуга. Развитие метода Томсона составляет основу электронной оптики, электронных ламп, современных ускорителей заряженных частиц.

В 1906 году Томсону за его исследование прохождения электричества через газы была присуждена Нобелевская премия по физике.

Томсон разработал и методы изучения положительно заряженных частиц. Вышедшая в 1913 году его монография «Лучи положительного электричества» положила начало масс-спектроскопии.

В лаборатории Томсона начались первые измерения элементарного заряда из наблюдения движения заряженного облака в электрическом поле. Этот метод был в дальнейшем усовершенствован Милликеном и привел к его ставшим классическими измерениям заряда электрона.

Всем сердцем Томсон был привязан к Кембриджу. Лишь несколько раз он выезжал за границу. Когда разразилась Первая мировая война, Томсон вошел в состав правительственной комиссии, занимавшейся организацией научных исследований, важных для морского флота. В частности, ученые Кембриджа решали задачу обнаружения подводных лодок.

В 1918 году Томсон получил высокий пост президента Тринити-колледжа. Через год он передал руководство Кавендишской лабораторией своему выдающемуся ученику Резерфорду, но с лабораторией не порывал до конца жизни. Он оставил здесь небольшую комнату, где и работал со своими учениками.

Умер Томсон 30 августа 1940 года.

МАКС ФОН ЛАУЭ

(1879—1960)

Творчество Лауэ связано с важнейшими проблемами физики, решение которых обусловило коренную перестройку науки. Он был глубоким теоретиком и первоклассным экспериментатором. Ученый заложил основы одного из могущественных средств исследования вещества – рентгеноструктурного анализа.

Макс Теодор Феликс фон Лауэ родился 9 октября 1879 года в Пфаффендорфе. Его отца, Юлиуса Лауэ, чиновника ведомства военных судов, часто переводили с места на место. Поэтому мальчик сменил несколько школ, прежде чем окончил протестантскую гимназию в Страсбурге.

Мать, Минна Лауэ, была настоящим другом сына и всегда разделяла его интересы. Именно она привела двенадцатилетнего мальчика в берлинское общество «Урания», некий аналог нашего общества «Знание».

В 1898 году в Страсбурге Макс закончил гимназию и через несколько дней поступил на военную службу. Но при этом он в 1898—1999 годах посещал лекции по физике в Страсбургском, а с 1899 года в Геттингенском университетах. Тогда-то и стало ясно Лауэ, что его призвание – теоретическая физика. В этом выборе свою роль сыграли Фойгт, Гильберт, а также опубликованные лекции Г. Кирхгофа. Зимой 1901/02 года Лауэ учился в Мюнхенском университете, а летом 1902 года переехал в Берлин, где посещал лекции Планка по теоретической оптике и термодинамике.

Под его руководством в июле 1903 года Макс с блеском защитил докторскую диссертацию, посвященную интерференции света на плоскопараллельных пластинках. Тогда же определилась и область научных интересов молодого ученого – физическая оптика. Совместная работа с Планком со временем переросла в крепкую дружбу.

Лауэ решил продолжить образование в Геттингене. Здесь в 1904 году Макс сдал экзамен на право преподавания в высшей школе.

Осенью 1905 года Планк предложил Лауэ место ассистента в Институте теоретической физики. За три года работы здесь молодой ученый внес существенный вклад в теорию излучения. Он доказал обратимый характер такого разделения пучка: полная энтропия когерентных лучей равна энтропии первоначального пучка, из которых они образовались.

К теории относительности Эйнштейна Лауэ отнесся достаточно осторожно. Однако через пять лет в 1910 году он дал первое обобщенное изложение этой теории, написав монографию о теории относительности. Его книга сыграла большую роль в укреплении новых представлений о пространстве и времени, о законах движения материи, совершающегося со скоростями, сравнимыми со скоростью света.

В 1909 году Лауэ перешел в Мюнхенский университет.

В 1910 году он вступил в брак с Магдаленой Деган, у них родились сын и дочь.

В последующие годы Лауэ был тесно связан с группой ученых во главе с Зоммерфельдом. Основные интересы этой группы касались области теоретической оптики и вопросов, связанных с таинственной природой тогда малоисследованных X-лучей.

Как говорит сам Лауэ про то время: «Я жил в атмосфере, насыщенной вопросами о природе рентгеновских лучей». Лауэ был сторонником волновой природы рентгеновских лучей и выдвинул мысль об их интерференции в пространственной решетке кристаллов. Идея соединить два масштаба – длину волны рентгеновских лучей и межатомное расстояние в кристалле возникла во время беседы с Эвальдом. У Лауэ родилась идея эксперимента интерференции рентгеновских лучей, которую он предложил Фридриху и Книппингу.

В опытах Лауэ, Фридриха и Книппинга «белое» рентгеновское излучение проходило через кристалл и давало интерференционные максимумы, соответствующие определенным длинам волн. В установке Фридриха и Книппинга лучи, выходящие из антикатода рентгеновской трубки, проходя через систему диафрагм, выделяли узкий пучок диаметром около 1 миллиметра. Этот пучок пронизывал укрепленный на гониометре[9] кристалл. В опытах использовались кристаллы цинковой обманки, каменной соли и свинцового блеска. Опыты блестяще подтвердили гипотезу Лауэ.

У.Г. и У.Л. Брэгги в книге «Рентгеновские лучи и строение кристаллов» дали следующую характеристику работы Лауэ: «У Лауэ явилась мысль воспользоваться упорядоченным расположением атомов или молекул в кристалле в качестве «решетки», пригодной для исследования рентгеновских лучей. Расстояния между атомами или молекулами по своему порядку величины оказываются подходящими для этой цели. Решение задачи о дифракции волн в этом случае не так просто, как для плоской, обыкновенной решетки, так как правильность расположения атомов в кристалле распространяется на три направления вместо одного. Лауэ, однако, с успехом справился с математической стороной задачи. Он показал, что при прохождении через кристаллы пучка рентгеновских лучей должен образоваться ряд пучков, отклоненных вследствие дифракции от направления первоначального пучка по законам, которые Лауэ определил теоретически. Фотографическая пластинка, помещенная за кристаллом перпендикулярно первоначальному пучку, после проявления должна обнаружить резкое пятно в том месте, где ее встретит первоначальный пучок, прошедший через кристалл без изменения направления, и вокруг этого пятна целый ряд других пятен в местах встречи отклоненных пучков с пластиной. Соответствующий опыт был произведен Фридрихом и Книппингом весной 1912 года и блистательно подтвердил идею Лауэ».

Результат исследования был впервые опубликован в «Мюнхенских известиях» за 1912 год. Статья «Интерференционные явления в рентгеновских лучах» состояла из двух частей – теоретической и экспериментальной. Теоретическая часть была написана Лауэ, экспериментальная – Фридрихом и Книппингом. Лауэ рассчитал теоретически появление интерференционных максимумов при прохождении рентгеновского луча через кристалл. Свой расчет ученый закончил рассмотрением вопроса, в какой мере эти опыты подтверждают волновую природу рентгеновских лучей. «Что выходящее из кристалла излучение носит волновой характер, вполне доказано разностью интерференционных максимумов, которые легко понять как интерференционные явления, но едва ли оно может быть понято на основе корпускулярных представлений…»

В течение всей своей жизни Лауэ неоднократно возвращался к работам по интерференции в кристаллах. Им была написана и переиздана много раз книга «Рентгеновские лучи и явления интерференции», написано также много статей.

За открытие дифракции рентгеновских лучей Лауэ в том же 1914 году был удостоен Нобелевской премии. В докладе Нобелевского комитета были такие слова: «В результате открытия Лауэ было неопровержимо установлено, что рентгеновское излучение представляет собой световые волны очень малой длины. Кроме того, оно привело к наиболее важным открытиям в области кристаллографии. Открытие Лауэ позволяет определить положение атомов в кристаллах и получить много полезных сведений».

Эйнштейн охарактеризовал открытие Макса фон Лауэ как одно из самых красивых в физике. Эта замечательная работа положила начало новой области физической науки – рентгеновской кристаллографии.

С ее помощью отец и сын Брэгги изучили структуру многих кристаллов, Д. Ходжкин применила ее для выяснения строения пенициллина, а Д. Кендрю и М. Перуц использовали для анализа белка. Все ученые получили в свое время Нобелевские премии.

В 1914 году Лауэ стал профессором в университете во Франкфурте-на-Майне. В 1917 году Лауэ занял пост заместителя директора Физического института кайзера Вильгельма в Берлине, сочетая административную работу с чтением лекций. В 1930 году Лауэ избирают иностранным членом АН СССР.

«Хорошо известны работы Лауэ по теории сверхпроводимости, – пишет Л.Н. Колотова. – Так, в 1931—1932 годах было известно, что достаточно сильное магнитное поле разрушает сверхпроводимость. Лауэ высказал мысль, что сверхпроводящая проволока сама усиливает поле и именно так, что у ее поверхности появляется значительно большее напряжение поля, чем на некотором отдалении от нее. Предположение о том, что для разрушения сверхпроводимости фактически всегда требуется одинаковая напряженность и что можно брать и другие формы тел – шары сверхпроводящие, было доложено в 1932 году при получении медали Планка. Опыты де Гааза подтвердили это предположение. Позже Лауэ занимался гидродинамикой сверхпроводимости и вместе с братьями Лондонами, которые были его учениками, в 1947 году создал феноменологическую теорию сверхпроводимости, которая вместе с термодинамикой двухфазной системы в существенных чертах описывает все наблюдаемые явления в сверхпроводящих веществах».

В 1933 году после прихода к власти нацистов в Германии, Эйнштейна смещают с поста директора Физического института. Лауэ сравнил травлю великого ученого с преследованием инквизицией Галилея. Его смелость не была наказана. Слишком высок был авторитет Лауэ. Он продолжал заниматься преподавательской и исследовательской работой.

В 1946 году Лауэ возглавил Институт Макса Планка, так стал называться Институт кайзера Вильгельма. Через год была издана книга Лауэ «История физики». Начиная с 1951 года и до конца жизни Лауэ был директором Института физической химии в Берлин-Далеме.

Макс Лауэ – один из 18 геттингенских физиков, подписавших в 1958 году декларацию-протест против атомного вооружения Западной Германии.

В жизни Лауэ слыл заядлым альпинистом и умелым яхтсменом Но главным его увлечением были автомобили и мотоциклы.

Любовь к скорости и стала причиной его смерти. 8 апреля 1960 года по пути в лабораторию он наехал на своей машине на мотоциклиста, который получил водительские права за два дня до этого. Мотоциклист погиб на месте, а автомобиль Лауэ перевернулся. 24 апреля 1960 года ученый скончался от полученных травм.

МАКС ПЛАНК

(1858—1947)

Выдающийся французский математик А. Пуанкаре писал: «Квантовая теория Планка есть, без всякого сомнения, самая большая и самая глубокая революция, которую натуральная философия претерпела со времен Ньютона».

Макс Карл Эрнст Людвиг Планк родился 23 апреля 1858 года в прусском городе Киле, в семье профессора гражданского права Иоганна Юлиуса Вильгельма фон Планка и Эммы (в девичестве Патциг) Планк.

В 1867 году семья переехала в Мюнхен. Планк потом вспоминал: «В обществе моих родителей и сестер я счастливо провел юные годы». В Королевской Максимилиановской классической гимназии Макс учился хорошо. Рано выявились и его яркие математические способности: в средних и старших классах стало обыкновением, что он заменял заболевших учителей математики. Планк вспоминал уроки Германа Мюллера, «общительного, проницательного, остроумного человека, умевшего на ярких примерах объяснять смысл тех физических законов, о которых он нам, ученикам, говорил».

По окончании гимназии в 1874 году он в течение трех лет изучал математику и физику в Мюнхенском и год – в Берлинском университетах. Физику преподавал профессор Ф. фон Жолли. О нем, как и о других, Планк говорил потом, что он у них многому научился и хранил о них благодарную память, «однако в научном отношении они были, в сущности, людьми ограниченными». Макс решил завершать образование в Берлинском университете. Хотя здесь он занимался у таких корифеев науки, как Гельмгольц и Кирхгоф, но и здесь он не получил полного удовлетворения: его огорчало, что лекции корифеи читали плохо, особенно Гельмгольц. Гораздо больше он получил от знакомства с публикациями этих выдающихся физиков. Они способствовали тому, что научные интересы Планка надолго сосредоточивались на термодинамике.

Ученую степень доктора Планк получил в 1879 году, защитив в Мюнхенском университете диссертацию «О втором законе механической теории тепла» – втором начале термодинамики, утверждающем, что ни один непрерывный самоподдерживающийся процесс не может переносить тепло от более холодного тела к более теплому. Через год он защитил диссертацию «Равновесное состояние изотропных тел при различных температурах», которая принесла ему должность младшего ассистента физического факультета Мюнхенского университета.

Как вспоминал ученый: «Будучи приват-доцентом в Мюнхене в течение многих лет, я напрасно ждал приглашения в профессуру, на что, конечно, шансов было мало, так как теоретическая физика тогда еще не служила отдельным предметом. Тем более настоятельной была потребность так или иначе выдвинуться в научном мире.

С этим намерением я решил разработать проблему о сущности энергии, поставленную Геттингенским философским факультетом на соискание премии за 1887 год. Еще до окончания этой работы, весной 1885 года, меня пригласили в качестве экстраординарного профессора теоретической физики в Кильский университет. Это казалось мне спасением; день, когда министериал[10] директор Альтгоф пригласил меня к себе в отель «Мариенбад» и более подробно сообщил мне условия, я считал самым счастливым в моей жизни. Хотя в доме родителей я и вел беззаботную жизнь, я все же стремился к самостоятельности…

Вскоре я переехал в Киль; моя геттингенская работа была там вскоре закончена и увенчалась второй премией».

В 1888 году Планк стал адъюнкт-профессором Берлинского университета и директором Института теоретической физики (пост директора был создан специально для него).

К тому времени Планк опубликовал ряд работ по термодинамике. Особую известность получила созданная им теория химического равновесия ненасыщенных растворов.

В 1896 году Планк заинтересовался измерениями, производившимися в Государственном физико-техническом институте в Берлине. Экспериментальная работа по изучению спектрального распределения излучения «черного тела», выполненная здесь, привлекла внимание ученого к проблеме теплового излучения.

К тому времени существовало две формулы для описания излучения «черного тела»: одна для коротковолновой части спектра (формула Вина), другая для длинноволновой (формула Рэлея). Задача состояла в том, чтобы состыковать их.

«Ультрафиолетовой катастрофой» назвали исследователи расхождение теории излучения с экспериментом. Расхождение, которое никак не удавалось устранить. Современник «ультрафиолетовой катастрофы», физик Лоренц, грустно заметил: «Уравнения классической физики оказались неспособными объяснить, почему угасающая печь не испускает желтых лучей наряду с излучением больших длин волн…»

«Сшить» формулы Вина и Рэлея и вывести формулу, совершенно точно описывающую спектр излучения черного тела, удалось Планку.

Вот как пишет об этом сам ученый:

«Именно в ту пору все выдающиеся физики обратились, как с экспериментальной, так и теоретической стороны, к проблеме распределения энергии в нормальном спектре. Однако ее они искали в направлении представления интенсивности излучения в ее зависимости от температуры, тогда как я подозревал более глубокую связь в зависимости энтропии от энергии. Так как значение энтропии тогда еще не нашло подобающего ему признания, то я нисколько не волновался за используемый мною метод и мог свободно и основательно проводить свои расчеты, не опасаясь вмешательства или опережения с чьей-либо стороны.

Так как для необратимости обмена энергии между осциллятором и возбужденным им излучением имеет особое значение вторая производная его энтропии по его энергии, то я вычислил значение этой величины для случая, стоявшего тогда в центре всех интересов виновского распределения энергии, и нашел замечательный результат, что для этого случая обратная величина такого значения, которую я здесь обозначил K, пропорциональна энергии. Эта связь так ошеломляюще проста, что я долгое время признавал ее совершенно общей и трудился над ее теоретическим обоснованием. Однако шаткость такого понимания скоро обнаружилась перед результатами новых измерений. Именно в то время, как для малых значений энергии, или для коротких волн, закон Вина отлично подтвердился также и впоследствии, для больших значений энергии, или для больших волн, установили сперва Люммер и Прингсгейм заметное отклонение, а проведенные Рубенсом и Ф. Курлбаумом совершенные измерения с плавиковым шпатом и калийной солью обнаружили совершенно иное, однако опять-таки простое отношение, что величина K пропорциональна не энергии, а квадрату энергии при переходе к большим значениям энергии и длин волн.

Так прямыми опытами были установлены для функции две простые границы: для малых энергий пропорциональность (первой степени) энергии, для больших – квадрату энергии. Понятно, что так же как любой принцип распределения энергии дает определенное значение K, так и всякое выражение приводит к определенному закону распределения энергии, и речь идет теперь о том, чтобы найти такое выражение, которое давало бы установленное измерениями распределение энергии. Но теперь ничего не было естественнее, как составить для общего случая величину в виде суммы двух членов: одного первой степени, а другого второй степени энергии, так что для малых энергий будет решающим первый член, для больших – второй; вместе с тем была найдена новая формула излучения, которую я предложил на заседании Берлинского физического общества 19 октября 1900 года и рекомендовал для исследования.

…Последующими измерениями формула излучения также подтверждалась, а именно, тем точнее, чем к более тонким методам измерения переходили. Однако формула измерения, если предполагать ее абсолютно точную истинность, была сама по себе только счастливо угаданным законом, имеющим только формальное значение».

Планк установил, что свет должен испускаться и поглощаться порциями, причем энергия каждой такой порции равна частоте колебания умноженной на специальную константу, получившую название постоянной Планка.

Ученый сообщает, как упорно пытался он ввести квант действия в систему классической теории: «Но эта величина [постоянная h] оказалась строптивой и сопротивлялась всем подобного рода попыткам. До тех пор пока ее можно считать бесконечно малой, т е. при больших энергиях и более продолжительных периодах, все было в полном порядке. Но в общем случае то там, то здесь возникала зияющая трещина, которая становилась тем более заметной, чем более быстрые колебания рассматривались. Провал всех попыток перекинуть мост через эту пропасть не оставил вскоре никаких сомнений в том, что квант действия играет фундаментальную роль в атомной физике и что с его появлением началась новая эпоха в физической науке, ибо в нем заложено нечто, до того времени неслыханное, что призвано радикально преобразить наше физическое мышление, построенное на понятии непрерывности всех причинных связей с того времени, как Лейбниц и Ньютон создали исчисление бесконечно малых».

В. Гейзенберг так передает широко известную легенду о раздумьях Планка: «Его сын Эрвин Планк вспоминал об этом времени, что он гулял со своим отцом в Грюневальде, что Планк в течение всей прогулки возбужденно и волнуясь рассказывал о результате своих исследований. Он говорил ему примерно так: «Или то, чем я занимаюсь теперь, есть совершенная бессмыслица, или речь идет, может быть, о самом большом открытии в физике со времен Ньютона»»

14 декабря 1900 года Планк на заседании Немецкого физического общества выступил со своим историческим докладом «К теории распределения энергии излучения нормального спектра». Он доложил о своей гипотезе и новой формуле излучения. Введенная Планком гипотеза ознаменовала рождение квантовой теории, совершившей подлинную революцию в физике. Классическая физика в противоположность современной физике ныне означает «физика до Планка».

Новая теория включала в себя, помимо постоянной Планка, и другие фундаментальные величины, такие как скорость света и число, известное под названием постоянной Больцмана. В 1901 году, опираясь на экспериментальные данные по излучению черного тела, Планк вычислил значение постоянной Больцмана и, используя другую известную информацию, получил число Авогадро (число атомов в одном моле элемента). Исходя из числа Авогадро, Планк сумел с высочайшей точностью найти электрический заряд электрона.

Позиции квантовой теории укрепились в 1905 году, когда Альберт Эйнштейн воспользовался понятием фотона – кванта электромагнитного излучения. Еще через два года Эйнштейн еще более упрочил положение квантовой теории, воспользовавшись понятием кванта для объяснения загадочных расхождений между теорией и экспериментальными измерениями удельной теплоемкости тел. Еще одно подтверждение теории Планка поступило в 1913 году от Бора, применившего квантовую теорию к строению атома.

В 1919 году Планк был удостоен Нобелевской премии по физике за 1918 год «в знак признания его заслуг в деле развития физики благодаря открытию квантов энергии». Как заявил А.Г. Экстранд, член Шведской королевской академии наук на церемонии вручения премии, «теория излучения Планка – самая яркая из путеводных звезд современного физического исследования, и пройдет, насколько можно судить, еще немало времени, прежде чем иссякнут сокровища, которые были добыты его гением». В нобелевской лекции, прочитанной в 1920 году, Планк подвел итог своей работы и признал, что «введение кванта еще не привело к созданию подлинной квантовой теории».


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39