Современная электронная библиотека ModernLib.Net

Из истории летательных аппаратов

ModernLib.Net / Пышнов Владимир / Из истории летательных аппаратов - Чтение (стр. 3)
Автор: Пышнов Владимир
Жанр:

 

 


Как видно из схемы самолета (рис. 6), голова летчика находилась невысоко над серединой крыла (ширина крыла 2,5 м). Другим недостатком, тоже общим для монопланов того времени, было тяжелое поперечное управление, осуществлявшееся путем искривления крыльев. Для этой цели тросы идущие к переднему лонжерону, были закреплены жестко, а тросы, идущие от заднего лонжерона, соединялись через рычажки или ролики и могли перемещаться так, что, если конец левого заднего лонжерона опускался, конец противоположного лонжерона поднимался. То, что управление было тяжелым, объяснялось не только деформированием конструкции при перекашивании крыла, но главным образом тем, что ось, относительно которой поворачивалось крыло, находилась на расстоянии, равном приблизительно 10% длины хорды, от передней кромки, а сама хорда имела длину около 2 м. В итоге аэродинамические шарнирные моменты были велики. Переход на элероны у монопланов произошел значительно позже. Для облегчения управления фирма "Ньюпор" применила такую систему управления, при которой искривление крыльев для управления креном выполнялось ножными педалями, а рулем направления управляли посредством боковых движений ручки. Такое управление не получило распространения, но оно затрудняло переход на этот самолет с самолетов других типов или с него на другие. Во всяком случае, подобная система управления считалась одним из основных минусов самолета. Рассматривая схему самолета, мы можем констатировать, что она напоминает схемы многих других самолетов, которые строились значительно позже и отличались от нее только некоторыми деталями. Самолет имел трапециевидное крыло умеренного сужения с удлинением около 5; киль отсутствовал, что являлось обычным для того времени; руль высоты был относительно невелик.
      Самолет мог бы иметь довольно высокое аэродинамическое качество, если бы его не ухудшали некоторые детали: довольно грубая носовая часть, с малым развитием выпуклых поверхностей, нужных для возникновения разрежений; большая длина тросовых расчалок и сложное шасси, когда в силовую систему входили передняя и задняя пары подкосов, а средняя пара служила только для шасси. Для амортизации служила обычная рессора, стоявшая поперек потока и совершенно не обтекаемая. При эффективном удлинении, равном приблизительно 4,6, и Сх00,1 аэродинамическое качество самолета было равно примерно 6. Нужно сказать, что по сравнению с самолетами того времени это было приличное качество, обеспечивающее достаточно пологий спуск при планировании и простой переход от моторного полета к планированию.
      Интересно, что профиль крыла был S-образный, т. е. с перегибом средней линии и примерно постоянным положением центра давления. На других самолетах обычными были профили с очень большой кривизной средней линии. В то время некоторые специалисты полагали, что постоянство центра давления улучшает продольную устойчивость. На самом деле это приводило только к некоторым прочностным преимуществам и к существенному ухудшению несущей способности крыла при больших углах атаки. Этим, может быть, объясняются имевшие место катастрофы в результате сваливания на крыло. Центровка самолета неизвестна, но нужно думать, что она была не более 40%, что для того времени можно считать довольно передней центровкой. Нейтральная центровка с зажатым рулем и без учета эффекта демпфирования составляла 42-44%. Самолет был, несомненно, устойчив по перегрузке и, вероятно, по скорости. Для того времени это было редким положительным качеством.
      Автору приходилось наблюдать полеты на самолетах "Ньюпор-4" в 1914-1915 гг. Полет выглядел спокойным и плавным, только при рулении самолет сильно раскачивался из-за малой базы колес и мягкости рессоры. При ознакомлении с конструкцией самолета сложилось впечатление, что лонжероны и тросовые расчалки имели большой запас прочности, хотя прочность, видимо, вообще не проверялась при статических испытаниях, как не проверялась и центровка.
      Из сказанного выше следует, что по устойчивости и прочности самолет подходил для выполнения высшего пилотажа. Катастрофы с самолетом происходили в основном в результате сваливания на крыло при потере скорости. Это можно объяснить в известной мере свойством профиля крыла -- с резким срывом обтекания. Одна катастрофа произошла при крутом спуске по прямой линии, из которого летчик, видимо, не смог вывести самолет и врезался в землю. Этот случай объясняли потерей жесткости фюзеляжа после грубых посадок в сочетании с малой эффективностью руля высоты. Известен случай поломки крыльев самолета при резком выравнивании во время посадки, когда поломались подкосы шасси, к которым крепились несущие расчалки. Видимо, в данном случае имел место производственный дефект или же было повреждено шасси при грубых посадках.
      Автор был свидетелем катастрофы самолета, при которой погиб летчик С. В. Гулевич осенью 1915 г. На высоте более 1000 м самолет вдруг начал быстро вращаться вокруг продольной оси и, продолжая вращаться, в состоянии пикирования дошел до земли и разбился. В то время о штопоре знали мало и умышленного штопора не делали. По характеру движения причину катастрофы можно было приписать невыходу из штопора.
      Однако некоторые обстоятельства говорят против этой версии. Во-первых, как это запомнил автор, фюзеляж самолета был в вертикальном положении, чего не бывает при штопоре, когда наклон фюзеляжа по отношению к вертикали составляет не менее 20о. Самолет был разрушен очень сильно, чего не бывает при штопоре самолета с малой удельной нагрузкой на крыло.
      Наконец, в некрологе, посвященном С. В. Гулевичу, проф. Н. Е. Жуковский указывает, что ножная педаль, при помощи которой производилось управление креном, была отъединена от трубы управления. Это могло произойти и при ударе, но если это имело место в полете в результате выпадения соединительного болтика, все происшедшее будет вполне объяснимо.
      В самом деле, если у самолета произойдет разъединение управления элеронами, они займут нейтральное положение, так как шарнирный момент их значительно сильнее зависит от угла отклонения, чем от изменения угла атаки крыла. Другое дело -- перекашивание крыльев, когда степень зависимости шарнирных моментов от угла перекашивания и от изменения угла атаки при движении крена одинакова, и после перекашивания крылья так и остаются в приданном им положении, а самолет, начав вращение, продолжает его. При невозможности остановить вращение самолет неизбежно будет двигаться по вертикали, так как подъемная сила будет поворачиваться вместе с крылом.
      Перейдем к рассмотрению летных характеристик самолета. Основной характеристикой является запас подъемной силы, т. е. отношение максимальной подъемной силы к весу. Подъемную силу определим по формуле
      При максимальном аэродинамическом качестве Кmах6, N70 л. с. и размахе крыльев l10,6 м получим максимальную подъемную силу
      При нормальном полетном весе, равном 680 кГ, Ymax/G1,47; при весе, равном 600 кГ, который, вероятно, близок к весу, имевшему место при выполнении петли П. Н. Нестеровым, Ymax/G1,67; для пустого веса самолета G0450 кГ величина Ymax/G02,2. Более простыми характеристиками служат величины, применяемые для статистики:
      По полученным значениям можно сделать такие выводы: по запасу подъемной силы самолет может быть отнесен к категории средненагруженных, маломаневренных самолетов. Значение KG8,3 близко к таковому для современных винтовых самолетов; значение KGo5,5 несколько велико и говорит о некотором перетяжелении конструкции. При весе 600 кГ величина Ymax/Gnу1,67 позволяет маневрировать со средним значением перегрузки 1,6, например, делать длительные виражи с креном около 50о. Как известно, П. Н. Нестеров выполнял более крутые виражи; очевидно, они выполнялись со скольжением, когда наличие нагрузки на боковые стенки фюзеляжа позволяет увеличить крен, не уменьшая вертикальной составляющей от подъемной и боковых сил.
      На рис. 7, 8 и 9 приведены результаты поверочного аэродинамического расчета самолета "Ньюпор-4". На рис. 7 дана поляра и зависимость Су от угла атаки; в нижней части графика дан профиль крыла. На рис. 8 приведены зависимости мощностей, потребных для преодоления сопротивления, и полезных мощностей от скорости для высот 0, 1, 2 и 3 км, в условиях горизонтального полета при полетном весе 600 кГ. По пересечениям кривых получаем значения максимальных скоростей горизонтального полета; по максимальной разности мощностей получим избытки мощности DN, по которым затем можем найти вертикальные скорости Vy75 DN /G.
      Рис. 7. Поляра и профиль крыла самолета "Ньюпор-4":
      Рис. 8. График мощностей для самолета "Ньюпор-4": сплошные линии потребные мощности; пунктир - располагаемые мощности.
      На рис. 9 даны зависимости максимальной скорости Vmax от высоты; вертикальной скорости от высоты при скорости Vнаб; скорости при наборе высоты Vнаб и минимальной скорости полета Vmin. Кроме того, на графике приведены зависимости высоты от времени подъема t при скорости Vнаб. Графики даны для полетных весов 600 и 680 кГ.
      Рис. 9. Основные летные характеристики самолета "Ньюпор-4" при полетных весах 600 и 680 кГ
      При более точном расчете мы получили максимальную подъемную силу, равную 980 кГ, при скорости V25,8 м/сек (93 км/час). При полетном весе 600 кГ это даст перегрузку nyl,63; ее горизонтальную составляющую nгор1,29; центростремительное ускорение jцс12,6 м/сек2; отсюда получим радиус виража rV2/jц.с.53 м и время совершения полного круга t2pr/V13 сек.
      Посмотрим теперь, как должна была выглядеть петля, которую выполнил П. Н. Нестеров. Расчет петли удобно и наглядно можно выполнить исходя из энергетических принципов. Величину hкV2/2g будем называть кинетической высотой -- она характеризует кинетическую энергию летящего самолета; при полете на минимальной скорости получим величину hк0V2min/2g; для самолета "Ньюпор-4" при полетном весе 600 кГ, hк018,5 м.
      Таким образом, для коэффициента перегрузки nу получим одно условие по скорости:
      второе условие будет по прочности: nу nу доп. Поскольку мы не знаем действительной прочности самолета, примем nу доп3,5, что достаточно для выполнения петли. В пределах от nу0 до nу mах мы можем произвольно выбирать значения nу, в зависимости от желаемого характера траектории; при движении по прямой мы всегда должны брать nусоs q. Для получения минимального радиуса кривизны траектории nуhк/hк0, но не более nу доп.
      Практически целесообразно выбирать такую перегрузку, при которой самолет будет обладать аэродинамическим качеством, близким к максимальному; это будет иметь место при условии Сy2 /plэCх0. Значение nу н (т. е. при Cу н) можно представить в виде
      где hк.н -- кинетическая высота горизонтального полета при максимальном аэродинамическом качестве
      Для рассчитываемого случая Cун1,15; hк.н21,5 м. Таким образом, при выполнении криволинейного движения следует придерживаться перегрузок, определяемых условием nу hк/21,5, но не более 3,5 и не более ny hк/18,5. Имея значение перегрузки nу и hк, мы можем определить радиус кривизны траектории в вертикальной плоскости:
      Это будет первым уравнением для расчета петли. Второе уравнение позволит рассчитывать значение hк. Для этой цели мы используем выражение, связывающее коэффициент продольной перегрузки с изменением уровня энергии самолета:
      Значение nх может быть раскрыто как функция hк и nу; для Р/G мы подобрали линейную зависимость от hк, которая справедлива в нужном диапазоне скоростей P/G0,28-0,0016hк.
      Для Q/G получим
      Подставив
      получим
      В итоге, для полета с работающим двигателем будем иметь
      При полете с выключенным двигателем мы отбрасываем тягу винта и добавляем его сопротивление, что дает DCx00,03, и тогда получим
      Вообще говоря, можно было бы вместо формул для nх дать график. Таким образом, мы имеем два уравнения: одно для радиуса кривизны -простое, и для уровня энергии -- дифференциальное. Кроме того, вспомогательные связи: hэh+hк; ds rdq; dhds sinq.
      За текущую координату может быть выбран путь s или угол поворота касательной к траектории q. Производя расчет движения, пользуясь дифференциальным уравнением, выбираем шаг расчета Ds или Dq; первый -- на прямолинейных участках, а на криволинейных участках удобнее брать Dq, так как мы всегда будем знать среднее значение угла q.
      Численное интегрирование усложняется необходимостью делать последовательные приближения или брать очень малые значения шага. Работа упрощается, если возможна экстраполяция средних значений величин, входящих в формулы. Приняв некоторый шаг для угла наклона траектории Dq, мы получим следующие формулы:
      В очередном интервале расчета мы знаем q, выбираем nу и вынуждены экстраполировать величину hк. ср; если после выполнения расчета hк. ср окажется иным, мы должны повторить расчет. Чтобы улучшить экстраполяцию, следует в процессе расчета строить графики hэ и h пo s и рядом с ними траекторию так, чтобы масштабы были одинаковы. На рис. 10 и 11 показаны результаты расчета петли для самолета "Ньюпор-4" применительно к условиям выполнения ее П. Н. Нестеровым.
      За исходные условия был взят горизонтальный полет на высоте 900 м при скорости 90 км/час, что давало hк 32 и начальный уровень энергии 932 м. Затем происходил переход в пикирование под углом 60o, которое продолжалось до момента достижения самолетом высоты 650 м с неработающим двигателем. Благодаря действию сопротивления воздуха, которое непрерывно возрастало, падал и уровень энергии, так что, когда высота стала равной 650 м, уровень энергии оказался равным 785 м и hк135 м, или скорость ~ 185 км/час. При этой скорости могла бы быть получена максимальная перегрузка nу135/18,57,3. Начинать петлю нужно было достаточно осторожно.
      Дальнейший расчет производился то интервалам Dq30o. Когда самолет начинал выходить из пикирования, сопротивление настолько возрастало, что, несмотря на включение двигателя, уровень энергии продолжал падать, а кинетическая высота некоторое время оставалась почти постоянной. Когда же самолет стал описывать первую четверть петли, величина hк стала быстро уменьшаться как из-за увеличения h, так и вследствие уменьшения hэ. Только после прохождения вертикального положения падение уровня энергии прекратилось, но hк продолжало падать и дошло до значения hк 10, когда максимальная перегрузка могла иметь величину, равную лишь примерно 0,5. Таким образом, в верхней точке петли летчика прижимало к сиденью с силой, равной 30-40% от силы веса. Во второй части петли hк стало увеличиваться, но не очень сильно, так как двигатель был опять выключен и уровень энергии стал понижаться.
      Рис. 10. Схема расчета петли Нестерова для самолета "Ньюпор-4" энергетическим методом
      По графику, приведенному на рис. 10, можно получить значение hк в любой точке петли и затем найти скорость по выражению V4,4 hк1/2. Разделив интервалы пути на средние значения скорости, можно найти интервалы времени и затем определить время совершения петли. От начального горизонтального участка до конечного оно оказалось равным около 10 сек.
      На рис. 11 дана общая схема пикирования, петли и последующего спирального спуска с, креном около 30о. Сопоставив ее с известной схемой, составленной самим П. Н. Нестеровым, мы можем увидеть весьма большое сходство между ними.
      Рис. 11. Схема снижения, петли и спирального спуска, полученная путем расчета применительно к условиям выполнения первой петли П. Н. Нестеровым
      Высота петли оказалась равной 90 м, что соответствует диаметру виража с очень большим углом крена, из чего и исходил П. Н. Нестеров. Только форма петли оказалась не окружностью, а фигурой, которую можно получить, если взять проволочное кольцо нужного диаметра и, разрезав его в нижней точке, сдвинуть концы, как бы затягивая петлю. Тогда в нижней части кривизна уменьшится, а в верхней увеличится.
      При совершении петли основной вопрос заключается в правильном выборе начальной скорости. Перед началом петли самолет должен иметь запас кинетической энергии, определяемый высотой hк.нач. Высота петли равна утроенному-учетверенному значению hк.н, соответствующему горизонтальному полету на наивыгоднейшей скорости, DhD(3,5-4,0)hк.н, где hк.н0, 82G/(S Cун).
      Кроме того, при выполнении петли происходит изменение уровня энергии от действия тяги и лобового сопротивления. Это изменение можно определить следующим образом. Длина пути полупетли будет равна
      Среднее значение перегрузки по пути петли nу~2,3; угол атаки находится в районе максимального качества. Тогда снижение уровня энергии за полупетлю составит
      Когда самолет окажется в верхней части петли, должна оставаться некоторая перегрузка -- не менее ny0,3-0,4, для чего необходим запас кинетической энергии, равный hк.кон ~(0,3-0,4) hк.н. В итоге получим
      Этот приближенный расчет hк. нач очень близок к тому, что было получено при выполнении петли. Чем больше P/G, т. е. чем больше тяговооруженность самолета, тем легче выполнять петлю и тем меньше может быть начальная скорость. Тяговооруженность самолета, на котором летал П. Н. Нестеров, была невысока, и перед петлей потребовался основательный разгон путем пикирования. Мы можем только удивляться тому, насколько правильно задумал П. Н. Нестеров выполнить петлю -- после пикирования около 300 м. Будь разгон более слабым, самолет завис бы в верхней части петли, и тогда непривязанный летчик оказался бы в затруднительном положении.
      Может возникнуть вопрос, была ли петля выполнена со снижением или нет? Если рассматривать этот вопрос только в отношении высот начала и конца петли при горизонтальной касательной к траектории, то она могла бы быть выполнена и без снижения при более резком выводе из пикирования. Из схемы, приведенной на рис. 10, видно, что в этом случае (пунктирный конец петли) скорость оказалась бы малой и налицо был бы риск сваливания в штопор. Петля считается выполненной без снижения в том случае, если после выхода из одной петли самолет готов к выполнению следующей не только по исходной высоте, но и по уровню энергии. Чтобы это было возможно, тяга двигателя должна обеспечивать длительный полет с перегрузкой не менее 2,3. П. Н. Нестеров располагал длительной перегрузкой, равной лишь около 1,6. Чтобы повторить петлю, ему нужно было бы вновь разгонять самолет пикированием.
      ========================<=========================
      НА САМОЛЕТЕ "МОРАН-Ж"
      Как мы уже указывали, самолет "Ньюпор-4" не отличался высокими маневренными качествами: запас мощности у него был небольшой, органы управления мало эффективные и только запас прочности был достаточен. Автору не приходилось встречать сведений о том, чтобы кто-нибудь, кроме П. Н. Нестерова, выполнял на нем высший пилотаж.
      Французский самолет "Моран-Ж" появился в 1912 г. и быстро завоевал большую популярность -- вначале благодаря ряду перелетов, совершенных на нем, а затем как прочный и маневренный самолет, легко выполнявший фигуры высшего пилотажа, и, наконец, как один из первых истребителей. "Моран" закупался во Франции и строился затем в России как тренировочный самолет. Его можно было встретить в авиационных школах до 1922-- 1923 гг., а отдельные экземпляры и позже. Когда в 1918 г. в Московской авиационной школе было введено обязательное обучение высшему пилотажу, то для этого использовались самолеты "Моран"; инструктором по обучению полетам на этих самолетах был замечательный советский летчик Михаил Михайлович Громов.
      Летом 1914 г. в Москве на Ходынском поле (впоследствии Центральный аэродром) петли Нестерова демонстрировал летчик-испытатель завода "Дукс" А. М. Габер-Влынский. Впоследствии на воздушных праздниках высший пилотаж на этом самолете демонстрировался рядом русских летчиков. Самолет "Моран-Ж" привлек внимание П. Н. Нестерова своим запасом мощности и хорошей управляемостью. Освоив самолет, П. Н. Нестеров в июле 1914 г. совершил на нем перелет Москва-- Петербург за 5 часов. Высокая маневренность самолета "Моран-Ж" привела П. Н. Нестерова к мысли о возможности сбить самолет противника, нанеся ему повреждение своим самолетом.
      Схема самолета "Моран-Ж" показана на рис. 12. По конструктивной схеме он почти не отличается от самолета "Ньюпор-4", т. е. тоже представляет собой расчалочный моноплан, однако, он несколько меньше и легче, чем "Ньюпор-4", а двигатель на нем был установлен более мощный -- "Гном", а затем "Рон" мощностью 80 л. с. По внешнему виду "Моран" выглядел изящнее, чем "Ньюпор", и преимущество в весе пустого самолета у него составляло 100 кГ, т. е. более 20%.
      Рис. 12 Самолет "Моран-Ж" (1913 г) с ротативным двигателем "Гном" мощностью 80 л. с. Площадь крыла с подфюзеляжной частью 15,5 м2, вес пустого самолета около 350 кГ, полетный вес с одним летчиком около 500 кГ.
      Приведенная площадь вредного сопротивления F0 была равна около 1,0 м, т. е. более чем в полтора раза меньше, чем у самолета "Ньюпор". Причины этого аэродинамического преимущества заключались в меньших размерах площади крыльев, меньшей общей длине тросовых расчалок крыльев и, безусловно, в более аэродинамичной форме капота двигателя. Важнейшим условием уменьшения сопротивления воздуха является наличие в носовой части тела гладких выпуклых поверхностей, на которых развивается пониженное давление, в большей или меньшей степени компенсирующее повышенное давление в районе центральной носовой части тела.
      У самолета "Моран" капот двигателя был полукольцевой; впоследствии на самолетах с ротативными двигателями стали применять кольцевые капоты, благодаря которым величина F0 была еще более уменьшена. Теория кольцевых капотов для двигателей с звездообразным расположением цилиндров была разработана значительно позже -- в тридцатые годы. Уменьшение величины F0 при повышенной мощности двигателя дало увеличение скорости до 130-135 км/час (вместо 110 км/час у самолета "Ньюпор"). Если кинетическая высота hкV2/2g у самолета "Ньюпор" составляла около 48 м, то у самолета "Моран" она равнялась 70 м; это было важное преимущество при выполнении фигур высшего пилотажа.
      Несмотря на меньшую величину F0, максимальное аэродинамическое качество самолета "Моран" было равно примерно 6,5, т. е. оно было таким же, как у самолета "Ньюпор", вследствие меньшего размаха крыльев.
      На рис. 13 даны поляра и форма профиля крыла самолета "Моран-Ж". Подобный профиль очень типичен для того времени; его относительная толщина составляет лишь около 5%, а носовая часть довольно сильно изогнута. Это приводит к довольно значительному увеличению коэффициента сопротивления при малых углах атаки, что, однако, не сказывается на основных летных характеристиках.
      На рис. 14 даны графики мощностей, потребных для горизонтального полета при весе 500 кГ, и графики полезных мощностей для высот от нуля до 4 км. По пересечениям кривых мы получаем максимальные скорости горизонтального полета, а по максимальной разности мощностей находим вертикальные скорости на режиме взлета:
      На рис. 15 приведены основные летные характеристики самолета "Моран-Ж" -- максимальная и минимальная скорости, скорость Vнаб, соответствующая максимальной вертикальной скорости, вертикальная скорость на разных высотах и время подъема на высоту, полученное путем приближенного интегрирования
      При скорости полета 120 км/час на высоте 1000 м потребная мощность составляет 44 л. с., а мощность, развиваемая двигателем, будет около 53 л. с. (см. рис. 14). При удельном расходе топлива, равном 0,26-0,28 кг на лошадиную силу в час, и к. п. д. винта, равном 0,75, часовой расход топлива будет равен около 16-17 кг/час.
      Рис. 13 Поляра и профиль крыла самолета "Моран-Ж"
      При запасе топлива в 50 кг время полета будет равно около 3 часов и дальность полета около 350 км. Сравнивая летные характеристики самолета "Моран-Ж" с характеристиками самолета "Ньюпор-4", мы видим, что самолет "Моран-Ж" имеет значительные преимущества.
      Важнейшим показателем маневренных возможностей самолета является величина максимальной перегрузки, обеспечиваемой двигателем, nyYmax/G, равной отношению максимальной подъемной силы к весу. У самолета "Ньюпор-4" мы имели nу1,65, у самолета "Моран-Ж" nу2,0. Впоследствии у маневренных истребителей величина nу стала достигать величины, равной 3,0, и даже 3,5.
      При вираже на скорости 30 м/сек на малой высоте и при коэффициенте перегрузки nу 1,9 мы получим радиус виража
      и время совершения полного круга
      Остановимся еще на некоторых особенностях самолета "Моран-Ж". Профессор В. П. Ветчинкин производил определение положения центра тяжести для ряда самолетов того времени, в том числе для самолета "Моран-Ж". Однако он интересовался только углом выноса шасси, т. е. наклоном линии, соединяющей центр тяжести с осью колес, и не отметил координаты центра тяжести по отношению к крылу. Их можно найти по схеме самолета, но не особенно точно. Произведя графическое построение, мы получили центровку 27-28%. Это необычно передняя центровка для самолетов того времени. С пассажиром она составляла около 30-31%.
      Рис. 14. График мощностей для самолета "Моран-Ж" при полетном весе 500 кГ.
      Горизонтальное оперение самолета состояло из одного руля высоты, что имело место и у некоторых других самолетов того времени. Однако площадь горизонтального оперения была небольшой и составляла около 1,6 м2. Положение фокуса самолета следует оценить (по расчету) в 35% от длины хорды крыла, конечно, при зажатом руле. Таким образом, самолет, несомненно, был статически устойчив и, тем более, устойчив по перегрузке.
      Рис. 15. Основные летные характеристики самолета "Моран-Ж" при полетном весе 500 кГ
      Небольшой по площади руль высоты, имевший к тому же значительную осевую компенсацию, давал совсем незначительные аэродинамические шарнирные моменты; в сочетании с незначительным трением это приводило к необычайной легкости управления рулем высоты и, несомненно, давало слабую зависимость усилия от перегрузки. В то же время, боковое управление перекашиванием крыльев было довольно тяжелым. Короткая ручка управления заканчивалась небольшой "баранкой", за которую держался летчик. Таким образом, получалась дисгармония в управлении -- большие усилия в одном направлении движения ручки и очень малые в другом. Руль направления площадью в 0,5 м2, тоже с осевой компенсацией, требовал совсем незначительных усилий на педалях.
      У самолета "Моран-Ж" была еще одна особенность в управлении. Если летчик небольшим усилием на педалях отклонял руль направления, создавая этим скольжение, то на ручке возникало большое усилие, стремящееся отклонить ее в сторону, обратную ходу педали, так как косое обтекание крыльев приводило к тенденции их перекашивания. У самолета Моран "Парасоль" эта особенность в управлении самолетом проявлялась столь резко, что, отклонив руль направления, летчик не мог удержать ручку от ухода ее в сторону.
      Указанная специфика управления требовала достаточной тренировки летчика, вызывала трудности при обучении, осложненные отсутствием двойного управления, но при надлежащем освоении техники управления эта особенность позволяла летчику выполнять самые разнообразные фигуры высшего пилотажа -петли, перевороты, падение листом, штопор и др. Прочность самолета, и особенно его пилотажных вариантов, была высокой. Случаи поломки этого самолета в воздухе автору не известны.
      При наличии у самолета "Моран-Ж" только одного руля высоты симметричного профиля, без неподвижной части -- стабилизатора, самолет не мог летать с брошенной ручкой. Поскольку на крыло при отсутствии подъемной силы действовал пикирующий момент, в случае брошенной ручки самолет должен был перейти в пикирование с дальнейшим переходом в перевернутый полет. Как известно, после тарана, который произошел на высоте около 1000 м, до высоты 50 м П. Н. Нестеров выполнял спиральный спуск, но затем самолет перешел в пикирование и упал в перевернутом положении. Такое поведение самолета свидетельствует о том, что П. Н. Нестеров потерял сознание и отпустил ручку управления; после перехода на отрицательные углы атаки и отрицательное значение nу он был выброшен из самолета, поскольку не был привязан.
      Аэродинамическое качество самолета с учетом сопротивления винта было равно примерно 5,7. Однако практически самолет снижался довольно круто по следующей причине: чтобы вращение винта не прекратилось при спуске, летчик старался держать повышенную скорость, тем самым отдаляя самолет от режима максимального качества. Так, при скорости 100-110 км/час аэродинамическое качество становилось равным 4,5. Поломки при посадке были часты -- в основном, погнутость оси колес. При повреждении шасси или при наличии сноса в момент касания самолет становился на нос или даже переворачивался на спину -- "капотировал".
      Нет сомнения в том, что П. Н. Нестеров в совершенстве овладел самолетом "Моран-Ж", свободно и точно на нем маневрировал и уверенно совершал посадки на небольшие полянки. Следует напомнить, что длина разбега самолета была равна 75-80 м и время разбега -- около 7 сек; длина пробега при посадке -80-90 м; взлетная дистанция до набора высоты, равной 10-15 м, составляла около 200 м; угол подъема на малых высотах -- около 8o-10o. При наличии профиля крыла с большой кривизной и установочного угла крыла по отношению к фюзеляжу, равного 5o-6o, линия нулевой подъемной силы составляла с осью фюзеляжа угол 10o-12o. При наборе высоты угол наклона фюзеляжа оказывался меньше наклона траектории и создавалось впечатление, что самолет "вспухает", т. е. поднимается почти при горизонтальном положении фюзеляжа. При спуске, наоборот, наклон фюзеляжа был больше наклона траектории, создавая иллюзию более крутого спуска; но зато это обстоятельство улучшало обзор вперед.
      В 1918 г. профессор В. П. Ветчинкин в полете на самолете "Моран-Ж", пилотируемом известным летчиком, героем Гражданской войны Ю. А. Братолюбовым, впервые произвел измерения перегрузок при полете в "болтанку" и при выполнении фигур высшего пилотажа. Эти исследования имели очень важное значение для разработки требований к прочности самолетов.
      =====
      НОВАЯ СИСТЕМА УПРАВЛЕНИЯ
      Перейдем теперь к вопросу, который весьма интересовал П. Н. Нестерова и явился объектом его исследований и конструктивных разработок. Уже первое знакомство с самолетами и средствами управления ими в 1910 г. заставило Петра Николаевича задуматься над причинами различия полетов самолетов и птиц. У всех птиц отсутствует вертикальное оперение, у самолета оно не только имеется, но и играет важную роль в управлении полетом.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10