Современная электронная библиотека ModernLib.Net

Из истории летательных аппаратов

ModernLib.Net / Пышнов Владимир / Из истории летательных аппаратов - Чтение (стр. 5)
Автор: Пышнов Владимир
Жанр:

 

 


На многочисленных авиационных состязаниях и конкурсах самолетов значительное место уделялось достижениям по грузоподъемности, и конструкторы, естественно, задумывались над тем, какими мероприятиями ее можно повысить. Простота конструкции самолетов того времени, примитивность применяемых расчетов, отсутствие каких-либо испытаний на прочность и упрощенная проверка центровки позволяли быстро строить новые самолеты. Очень распространены были и модификации уже готовых самолетов, полученные путем перестройки отдельных их частей. Преуспевающие фирмы создавали по 2-- 3 типа и более самолетов в год.
      В период 1910-- 1920 гг. конструкторы самолетов руководствовались в своей работе некоторыми теоретическими соображениями, но больше экспериментировали интуитивно, стараясь улучшить свои самолеты. Многие эксперименты оказывались неудачными, но некоторые из них дали положительный эффект. Объяснить причину удачи или неудачи не всегда могли, хотя, естественно, пытались это сделать. Подражательство у конструкторов было так сильно развито, что трудно установить, кто первый применил то или иное удачное нововведение.
      Как мы уже указывали, увеличение площади крыльев позволяет увеличить подъемную силу, хотя и в слабой степени. В формулу для G площадь S входит под кубичным корнем. Однако конструкторы-практики обратили внимание на то, что увеличение размаха дает значительно лучший эффект, чем увеличение ширины крыла. Это можно наглядно видеть по развитию самолетов фирмы "Фарман".
      Так, если самолет "Фарман-4" имел размах крыльев 10,5 м, то затем фирма стала наращивать размах верхнего крыла и постепенно перешла к схеме биплана с размахом верхнего крыла, значительно большим, чем размах нижнего. Самолет "Фарман-16" (1912 г.) имел размах крыльев 13,8 м, а "Фарман-22" (1913 г.) -15,6 м. Самолеты "Фарман-16" и "Фарман-22" были совершенно подобны, с одинаковыми гондолами экипажа, одинаковой шириной крыльев, но только размах верхнего крыла у самолета "Фарман-22" был увеличен. Оба самолета применялись в России, и автор помнит высказывания летчиков о том, что "Фарман-22" планирует значительно лучше, чем "Фарман-16". Это говорило о более высоком аэродинамическом качестве первого самолета. Соответственно и грузоподъемность его была выше, хотя этому способствовал и более мощный двигатель.
      К конструкторам, которые осознали выгоду большого размаха крыльев, нужно отнести прежде всего И. И. Сикорского. Если в 1910 г. он строил самолеты с размахом крыльев 10 м, то самолет С-10 (1912 г.), который на конкурсе военных самолетов показал наибольшую грузоподъемность, имел размах крыльев около 16 м. Важно отметить, что как у самолетов "Фарман", так и у самолетов И. И. Сикорского, несмотря на увеличение размаха, ширина крыльев не увеличивалась.
      Однако самый решительный шаг в сторону увеличения размаха крыльев был сделан И. И. Сикорским в 1913 г., когда он построил сначала самолет "Русский Витязь" ("Гранд") с размахом крыльев 27 м, а затем самолет "Илья Муромец" с размахом 34 м (по некоторым сведениям -- 37 м). И. И. Сикорский как инженер хорошо понимал, что увеличение размаха в 2-- 2,5 раза по сравнению с размахом, типичным для самолетов того времени, поведет к большому утяжелению конструкции и что увеличение площади крыла путем его уширения не вызвало бы такого утяжеления. Однако он выбрал путь увеличения размаха.
      Некоторые зарубежные конструкторы того времени -- П. Шмидт, Р. Кодрон, Л. Бреге -- доводили размах крыльев до 17-- 17,5 м, но это несравнимо с размахом крыльев самолетов И. И. Сикорского. Автор не помнит, чтобы в каких-либо теоретических работах того времени рекомендовалось столь значительное увеличение размаха. Мы уже указали, что В. Л. Моисеенко в 1921 г. сомневался в выгодности большого размаха. Подробный аэродинамический анализ самолетов "Русский Витязь" и "Илья Муромец" мы приведем далее.
      Параметры самолета "Илья Муромец" были выбраны, несомненно, очень удачно, и его конструкция была технически последовательна для условий того времени. Если самолет "Русский Витязь" был довольно несуразен, а фюзеляж его тонок, длинен и недостаточно жесткий, то все его недостатки были устранены в конструкции самолета "Илья Муромец". Будучи построен в конце 1913 г., самолет "Илья Муромец" был быстро освоен в эксплуатации и пилотировании даже в довольно сложных условиях. Это уже была не "этажерка" и не "стрекоза", как именовались некоторые самолеты того времени, а действительно воздушный корабль, поднимающий 1,5-- 2 тонны груза и способный к длительным полетам.
      Всего было построено 73 экземпляра самолетов "Илья Муромец" и последние экземпляры этих самолетов летали еще в 1921-- 1922 гг., т. е. как тип он прожил почти 10 лет -- для того периода этот срок значительный. Десятки самолетов "Илья Муромец" принимали участие в боевых действиях в первой мировой войне и, несмотря на то, что они привлекали внимание германской зенитной артиллерии и истребительной авиации, только один самолет был сбит на фронте. Это определялось его высокой живучестью и наличием круговой пулеметной обороны. Хотя поломок и аварий на этих самолетах было много, но катастроф относительно мало.
      При той широкой системе подражательства и копирования конструкций, которая имела место в период первой мировой войны, за рубежом самолеты, подобные самолету "Илья Муромец", были созданы только через 4-5 лет, после наступления некоторого промежуточного этапа двухмоторных конструкций, и, тем не менее, зарубежные варианты не были успешными.
      Так, например, германские самолеты Цеппелин "Штакен", хотя и были по размаху даже больше, чем "Илья Муромец", и имели более мощные двигатели, однако, относительный вес конструкции у них был очень велик и сама конструкция слишком сложна.
      К 1918-- 1920 гг. относится увлечение трехпланными и даже четырехпланными конструкциями. Примером огромного триплана может служить самолет Tarrant "Tabor", построенный в Англии в 1919 г. Он имел 6 двигателей по 500 л. с. каждый, размах по среднему крылу составлял 40 м, высота самолета около 11 м (у самолета "Илья Муромец" высота была только 4,5 м), двигатели были разнесены не только по размаху, но и по высоте, причем ось винта верхнего двигателя была на высоте около 8 м над землей. Самолет разбился при первой же попытке взлета, еще не оторвавшись от земли, -- в результате резкого подъема хвоста он уткнулся носом в землю.
      Еще более странно выглядел самолет Капрони СА-60 "Капрониссимо". У него были три трипланных крыла, поставленных одно за другим, размах крыльев составлял около 28 м, самолет имел восемь двигателей по 400 л. с. каждый. Самолет был построен в 1921 г. и тоже разбился при первом взлете. Теория индуктивного сопротивления показала, что расположение несущих систем одна за другой является совершенно нецелесообразным, и самолет "Капрониссимо" лишь демонстрирует, по какому ошибочному пути может идти создание летательного аппарата при отсутствии теории или благоприятного эксперимента с моделями.
      Был и у нас неудачный эксперимент с трипланом. В 1920-- 1921 гг. специальное конструкторское бюро под названием "Комиссия по тяжелой авиации" (КОМТА), в состав которого входили виднейшие специалисты по аэродинамике и самолетостроению, разработало и построило самолет "КОМТА", который должен был заменить самолет "Илья Муромец". Обладая почти такой же мощностью двигателей, как и самолет "Илья Муромец", самолет "КОМТА" был сделан по трипланной схеме и имел размах крыльев всего 16 м, т. е. вдвое меньше, чем у самолета "Илья Муромец". Самолет долго испытывался и даже без нагрузки с трудом отрывался. После ряда доводок он, кажется в 1922 г., совершил один полет по кругу, но к этому времени было уже ясно, что параметры самолета выбраны неправильно и поверочный расчет с использованием теории индуктивного сопротивления показал, что запас мощности у него даже без нагрузки очень мал.
      Неудача постигла и самолет В. А. Слесарева "Святогор" (1915-- 1916 гг.); казалось бы, конструктивно он был продуман более тщательно, чем "Илья Муромец", шасси он имел более высокое и более красивое, но, видимо, значительно более тяжелое. Основная причина неудачи заключалась в применении центрального расположения двигателей (в фюзеляже) с передачей мощности на разнесенные винты. Такая передача давала большую потерю мощности и в итоге запас мощности у самолета оказался недостаточным.
      Следует сказать, что разнесение двигателей по крылу, как это впервые было сделано на самолете "Русский Витязь", является важным фактором в снижении веса конструкции у самолетов с большим размахом крыльев.
      Центральные силовые установки с расположением двигателей в фюзеляже казались выгодными аэродинамически. При малой надежности двигателей того времени привлекала возможность их ремонта в полете; наконец, с помощью системы передачи можно было легче придать винту оптимальную для него скорость вращения. Хотя самолетов с расположением двигателей в фюзеляже и с передачей мощности на разнесенные винты строилось немало, широкого распространения они не получили.
      АНАЛИЗ ГРУЗОПОДЪЕМНОСТИ САМОЛЕТОВ
      На этом мы закончим обзор теоретических исследований и практических конструкций грузоподъемных самолетов в период до 1921-- 1922 гг., когда произошел перелом в понимании условий достижения большой грузоподъемности. Этот перелом был вызван развитием общей теории динамического полета и связан прежде всего с именами ученых -- Н. Е. Жуковского и Л. Прандтля. Всякое научное достижение, открытие и крупное изобретение имеет историю своего развития -- от первичных догадок, через наблюдения, опыты, теоретические построения, частные решения, к полному осознанию физической сущности и, наконец, к итоговой теории, устанавливающей количественные зависимости.
      Так было и с теорий крыла. Принципы образования тяги и подъемной силы в воздушной среде в механическом отношении аналогичны. Принцип работы воздушных движителей, т. е. устройств для создания силы тяги, был открыт значительно раньше, чем принцип работы крыла. Это можно объяснить тем, что теоретически это было проще, но главное заключается в том, что воздушному винту предшествовал водяной винт и другие водяные движители. Из основ механики следует: чтобы в жидкой или газовой среде при помощи некоторого устройства получить силу тяги, окружающей среде необходимо сообщать секундное количество движения, равное желаемой силе тяги. Иначе говоря, импульс силы тяги должен быть равен, но противоположен по знаку импульсу, сообщенному массам окружающей среды. Все это было изложено, в частности, в теории идеального пропеллера, которая была разработана английским ученым У. Фрудом в 1888 г.
      При использовании теории идеального пропеллера для величины силы тяги при отсутствии осевой скорости было получено такое выражение:
      где
      -ометаемая лопастями площадь;
      Nдв -- мощность двигателя;
      h0 -- относительный коэффициент полезного действия, характеризующий побочные потери пропеллера, т. е. сопротивление лопастей и дополнительные скорости потока;
      r/r0 -- относительная плотность воздуха; Kv10,3(h0)2/3.
      Эта формула послужила выражением для подъемной силы вертолета на режиме висения, т. е. при отсутствии поступательной скорости.
      Принцип создания подъемной силы крылом должен быть вполне аналогичен принципу создания тяги лопастями винта. Можно было утверждать, что за крылом воздушный поток должен иметь некоторую вертикальную составляющую скорости движения, направленную против подъемной силы, т. е. вниз.
      Основой теории крыла явилась работа Н. Е. Жуковского "О присоединенных вихрях" (1906 г.). В этой работе было сделано важнейшее открытие, а именно, что основной эффект крыла состоит в сообщении набегающему потоку циркуляционного движения, как если бы крыло было заменено вихрем с некоторой циркуляцией скорости J. Тогда величина подъемной силы Y будет простейшим образом связана с величиной J, скоростью полета V, плотностью воздуха r и размахом крыла l: YrJVl.
      Если крыло имеет определенный размах, то с его концов должны сбегать свободные вихри. Н. Е. Жуковский убедился в справедливости этого, поставив специальный эксперимент в аэродинамической трубе.
      Свободные вихри, которые сбегают с концов крыла и тянутся за ним, очень медленно затухая, являются итогом воздействия крыла на воздушную среду. Исходя из этих вихрей, мы можем восстановить картину воздушных течений и определить секундный импульс, сообщаемый крылом воздушной среде.
      Схема расчета величины подъемной силы, развиваемой крылом с размахом l и при мощности двигателя Nдв, уже была приведена в статье "На чем летал П. Н. Нестеров" и была получена следующая формула:
      В случае биплана или триплана вместо размаха l в формулу вставляется эффективный размах lэ:
      Здесь h -- высота коробки крыльев; у бипланов h/l имеет значение 0,l-0,2; у трипланов -- 0,2-0,3. У бипланов разнесение крыльев по высоте эквивалентно увеличению размаха на 6-8%, у трипланов -- на 15-20%. Триплан "КОМТА" имел размах крыльев 16 м, а эффективный размах у него был равен около 19 м.
      Величину F0 можно найти по известной максимальной скорости, используя выражение для расходования мощности:
      Коэффициент полезного действия винта принимаем ориентировочно равным 0,75-0,80; плотность воздуха и мощность двигателя должны быть взяты в соответствии с высотой, для которой взята максимальная скорость. Лучше брать условия полета на малой высоте, когда мощность нам известна точнее, а доля индуктивного сопротивления меньше.
      Если в формулу для подъемной силы подставить выражение для аэродинамического качества
      то мы получим:
      Интересно, что эта формула вполне аналогична формуле для статической тяги винта, но только вместо диаметра винта в нее входит размах крыльев и значение Ку здесь значительно больше. Теперь мы можем сопоставить все три формулы для подъемной силы, как они складывались исторически. Запишем их так:
      Если взять для примера N100 л. с., S30 м2 и l12 м, все три формулы дадут примерно одинаковый результат: Y~1400 кГ. Однако третья формула дает наибольшие возможности для анализа, так как значение Ку мы можем раскрыть: Ку8,6K1/3h2/3. Значения A и В мы взяли по статистике для того времени, и при значительном изменении форм и параметров самолета принятые значения A и В не будут пригодны.
      Если взять современный самолет с турбовинтовыми двигателями мощностью 10000 л. с., с размахом l30 м и площадью крыльев S100 м2, то по первой формуле мы получили бы подъемную силу Y1140 Т, по второй Y247 T и по третьей для аэродинамического качества K16 и Ky18 Y380 T. Как видно, первые два выражения дали ошибочные результаты.
      Третья формула ценна не только тем, что она дает наиболее точные результаты, но и тем, что она последовательно раскрывает роль различных параметров, особенно, если ее представить в таком варианте:
      Однако практически при увеличении размаха крыльев увеличивается и F0, и поэтому удобнее пользоваться следующим вариантом формулы:
      Произведем расчет подъемной силы самолета "Илья Муромец": N600 л. с.; h0,75; l32 м. Для определения величины F0 воспользуемся сведениями о том, что при весе 5200 кГ на малой высоте самолет развивал максимальную скорость Vmax100-105 км/час, или 29 м/сек. Используя приведенную выше формулу для мощности, затрачиваемой на горизонтальный полет, получим:
      F014,5 м2
      При площади крыльев, равной 145 м2, это даст коэффициент вредного сопротивления Cх01,28F0/S0,128. Если сравнивать с параметрами современных самолетов, то это огромная величина.
      Поскольку у самолета "Илья Муромец" применялся винт фиксированного шага (винтов с изменяемым в полете шагом тогда еще не было), то при полете с максимальной подъемной силой число оборотов винта понижалось, а вместе с этим уменьшались в некоторой степени мощность двигателей и коэффициент полезного действия винтов. Это приводило к уменьшению подъемной силы примерно на 6-8%. Аэродинамическое качество самолета будет
      Затем находим Ку0,938,66,61/30,752/312 и, наконец, величина максимальной подъемной силы будет равна Y12(Nдвl)2/38650 кГ.
      Самолет должен обладать избытком подъемной силы для маневрирования и подъема. Только на потолке подъемная сила при работе двигателей на полной мощности будет равна полетному весу, а маневрирование потребует уменьшения высоты. Соотношение Y/Gny1,65; эта величина ny невелика, но она обеспечивает надежный полет и высоту потолка около 3000 м.
      В 1916 г. И. И. Сикорским был построен вариант самолета "Илья Муромец D bis", или, как его называли, "Дим". При мощности двигателей 440 л. с. и с уменьшенным до 26 м размахом на нем была получена подъемная сила около 6000 кГ, или на 30% меньше, чем у основного варианта самолета. По свидетельству инж. В. Моисеенко, "Дим" был забракован по причине малой грузоподъемности.
      Перейдем теперь к более детальному рассмотрению характеристик и свойств самолета "Русский Витязь" и "Илья Муромец".
      ==========================================
      Самолет "Русский Витязь"
      Самолет "Русский Витязь" был построен в одном экземпляре, но претерпел несколько видоизменений. Хотя он не получил распространения, но был первым самолетом с очень большим размахом крыльев и послужил предшественником серии самолетов типа "Илья Муромец". Самолет "Русский Витязь" имел размах крыльев 27 м, что в 2,5-3 раза больше, чем у самых крупных.
      Самолет был спроектирован в 1912 г. и закончен постройкой в начале 1913 г. Несмотря на смелость и новизну конструктивного решения, новый самолет, которому было присвоено первоначально наименование "Гранд-РБВЗ" (Русско-балтийский вагонный завод), уже в марте 1913 г. стал совершать полеты. На нем первоначально были установлены два двигателя по 100 л. с. Из выполненных нами расчетов следует, что самолет должен был иметь максимальную подъемную силу около 3800 кГ, а пустой вес его оказался равным около 3000 кГ. Отсюда ясно, что запас подъемной силы был недостаточен и это с очевидностью показало испытание самолета. Тогда были установлены еще два двигателя по 100 л. с., которые вместе с первоначальными образовали две тандемные установки. Иными словами, двигатели стояли друг за другом, но у одного двигателя винт был тянущий, т. е. установлен перед крылом, а у другого -- толкающий, т. е. установлен за крылом. Тандемная установка была применена здесь впервые в самолетостроении и впоследствии довольно часто применялась на многодвигательных самолетах. Однако затем И. И. Сикорский отказался от этой схемы и расположил все четыре двигателя с тянущими винтами на крыле (рис. 2).
      Этот вариант и стал называться самолетом "Русский Витязь".
      При конструировании самолетов мы всегда сталкиваемся с тем, что всякая конструктивная особенность, будучи выгодной в одном отношении, оказывается невыгодной в другом. Это всеобщий закон для конструкции, но в случае летательных аппаратов, когда приходится тщательно экономить в весах и стремиться к достижению минимальных энергетических затрат, противоречивость различных факторов проявляется особенно остро. Так, желая повысить подъемную силу, мы должны увеличить размах крыльев, но это неизбежно ведет к утяжелению конструкции; развивая органы устойчивости, мы, как правило, или повышаем сопротивление движению или утяжеляем самолет, и так получается всегда. За каждым конструктивным мероприятием следует некоторая "плата" за него, и это всегда нужно учитывать.
      Рис. 2. Схема самолета "Русский Витязь"
      Тандемное расположение двигателей привлекает своей компактностью, уменьшением сопротивления и особенно тем обстоятельством, что оси винтов в этом случае мало удалены от центра тяжести самолета и в случае отказа одного из двигателей заворачивающий момент оказывается относительно небольшим. Этот фактор бывал часто решающим при выборе тандемного расположения двигателей.
      Отрицательное свойство тандемного расположения винтов состоит в том, что задний винт оказывается в этом случае в струе от переднего винта и его сила тяги понижается. Это особенно существенно при малых скоростях и мало существенно при больших скоростях полета. Если у самолета запас мощности велик, то тандемная установка может оказаться выгодной. У самолета "Русский Витязь" запас мощности был мал, и поэтому более выгодными были разнесенные винты. Разнесение двигателей по крылу способствует разгружению крыла от изгибающего момента и тем самым дает возможность уменьшить вес конструкции -- это тоже немаловажный фактор.
      Таким образом, в зависимости от ряда обстоятельств, выгодным оказывается одно или другое решение. Если взять некоторую деталь самолета, например, стойку между крыльями, то можно сделать ее легкой, но сравнительно толстой -- пустотелой или же, наоборот, сделать ее более тяжелой, но тонкой.
      Чтобы способствовать выбору лучшего решения, было введено понятие об авиационном весе. Под авиационным весом понимался вес груза, на несение которого данным самолетом затрачивалась такая же мощность, как и мощность, затрачиваемая на несение рассматриваемой детали, не только обладающей весом, но и повышающей сопротивление самолета. Исходя из минимума авиационного веса, можно было выбрать оптимальную конструкцию данной детали. Если исходить только из условия получения максимальной полезной грузоподъемности, не стремясь получить большие величины скорости и дальности полета, то оказывается, что преимущества имеют конструкции, в которых предпочтение отдается уменьшению веса.
      Такое мнение складывалось в связи с тем, что исходили из упрощенных оценок веса конструкции и роли сил сопротивления. Впоследствии выяснилось, что можно очень значительно уменьшить силы сопротивления самолета вместе с довольно значительным уменьшением веса конструкции. Свободнонесущие крылья очень большого размаха оказались не тяжелее ферменных конструкций, подобных бипланным коробкам самолетов "Русский Витязь" и ряда других.
      При рассмотрении схемы самолета "Русский Витязь" бросается в глаза большая длина фюзеляжа и довольно большая площадь горизонтального оперения. Есть указания на то, что имелись опасения по поводу устойчивости самолета, и поэтому мощность его горизонтального оперения была повышена.
      Характеристикой мощности оперения служит величина
      где
      Sго -- площадь горизонтального оперения;
      Lго -- расстояние от центра тяжести самолета до центра давления горизонтального оперения;
      bср -- средняя ширина крыла.
      Для самолета "Русский Витязь" Аго приблизительно равно 1,0, что примерно в 2,5 раза больше среднего значения этой величины для самолетов того времени, да и для более позднего. Вопросы устойчивости мы рассмотрим более детально применительно к самолету "Илья Муромец".
      Строительная высота фюзеляжа самолета "Русский Витязь" была относительно мала, и для увеличения его жесткости был поставлен наружный шпренгель. Кабина экипажа значительно выдавалась из фюзеляжа и имела довольно грубую аэродинамическую форму. Эти недостатки были устранены в конструкции самолета "Илья Муромец". Шасси самолета довольно сложное -имело 8 колес и 6 лыж. Грубость аэродинамических форм, обилие стоек и растяжек обусловили большое значение приведенной площади сопротивления F0, которая составляет около 10% площади крыла. Для современных дозвуковых самолетов она составляет лишь около 1,5-- 2% площади крыла.
      Учитывая эффект биплана, получим для самолета "Русский Витязь" эквивалентный размах крыла, равный 28,3 м; при значении F0, равном около 12 м2, и мощности двигателей Nдв400 л. с. получим максимальное аэродинамическое качество около 6 и максимальную подъемную силу около 5800 кГ. При полетном весе 4200 кГ запас подъемной силы будет Y/Gl,38; это, конечно, очень небольшой запас, и он мог обеспечить лишь пологие виражи на малых высотах и высоту теоретического потолка около 2,5 км при практическом потолке около 2 км.
      2-го августа 1913 г. самолет "Русский Витязь" совершил рекордный по продолжительности полет, пролетав с 7-ю пассажирами 1 час 54 мин. Вес пассажиров около 550 кГ, часовой расход топлива около 90-- 100 кг; полный запас топлива около 200-- 250 кГ. Тогда величина нагрузки будет равна 700-750 кГ и при весе пустотелого самолета, равном 3500 кГ, взлетный вес получится 4200-- 4300 кГ.
      Самолет "Русский Витязь" пострадал от совершенно неожиданного происшествия: над ним пролетал другой самолет, ротативный двигатель которого сорвался с моторамы и упал прямо на центральную часть крыла самолета "Русский Витязь". Самолет "Русский Витязь" не восстанавливали не только из-за того, что он был сильно поврежден, но, видимо, и потому, что к этому времени был разработан и, вероятно, уже строился более совершенный самолет -- "Илья Муромец".
      ==
      Самолет "Илья Муромец"
      Первый экземпляр самолета "Илья Муромец" был закончен постройкой в конце 1913 г. и совершил свой первый полет 11 декабря 1913 г., а в мае 1914 г. совершил свой первый полет второй экземпляр самолета этого типа -- с более мощными двигателями. Об успехе новой конструкции свидетельствовали как регулярные полеты, так и рекордные достижения. Из них следует отметить полет с 10-ю пассажирами на высоту 2000 м; полет с шестью пассажирами продолжительностью 6 час 33 мин и полет с 15-ю пассажирами (включая экипаж).
      От самолета "Русский Витязь" самолет "Илья Муромец" отличался прежде всего увеличенным размахом крыльев, который (по некоторым материалам) на первом экземпляре самолета был равен 37 м. Самолеты, которые строились впоследствии имели размах крыльев от 30 до 33 м.
      Рис. 3. Схема самолета "Илья Муромец"
      Фюзеляж самолета был несколько укорочен, а главное, была увеличена почти в два раза его строительная высота, и тем самым значительно повышена жесткость и уменьшено сопротивление. Вместе с увеличением размаха крыльев увеличилась и их площадь.
      При рассмотрении схемы самолета с современной точки зрения бросается в глаза отсутствие носовой части, достаточно далеко выдвинутой вперед (рис. 3). Это свидетельствует об отсутствии стремления получить "переднюю" центровку, о преимуществах которой тогда еще не было широко известно.
      Самолеты "Илья Муромец" прошли суровую школу боевых полетов в первую мировую войну в качестве разведчиков и тяжелых бомбардировщиков русской армии. Это были первые самолеты, которые несли многопудовые бомбы, имели несколько оборонительных пулеметных установок, в том числе, установки поверх центроплана, на шасси и сзади -- в концевой части фюзеляжа.
      На самолетах "Илья Муромец" впервые был освоен полет в закрытой кабине, носовая часть которой была полностью застеклена и обеспечивала отличный обзор передней полусферы. На этих самолетах впервые были установлены разнообразные пилотажные, навигационные и бомбардировочные приборы, а также был освоен полет в сложных условиях, при отсутствии видимости земли и при необходимости "пробивания" облаков.
      Первые полеты самолета "Илья Муромец" были вполне успешны, а вскоре на нем были установлены рекорды не только грузоподъемности, но и дальности и продолжительности полета. Это свидетельствует об удовлетворительном решении вопросов устойчивости и управляемости и наличии хорошего запаса подъемной силы у самолета. Несмотря на свой, казалось бы, малый запас прочности, самолет "Илья Муромец" успешно переносил полеты в "болтанку", которой в то время старались избегать даже при полетах на небольших и более прочных самолетах.
      На протяжении примерно 5 лет серийного производства самолеты "Илья Муромец" подвергались модификациям в основном в связи с заменой двигателей. Некоторые изменения были внесены в размеры самолета -- размах и площадь крыльев. Следует отметить также модификацию самолета, связанную с увеличением запаса его прочности, которая явилась реакцией конструкторского бюро на имевший место случай поломки самолета в воздухе.
      На некоторых самолетах были уширены крылья; видимо, это было связано с повышением полетного веса при установке более мощных двигателей. Однако, как мы покажем далее, хорда крыльев у самолетов "Илья Муромец" была относительно мала, и это не позволяло самолету выходить на режимы максимальной грузоподъемности. Вообще же самолет "Илья Муромец" был выдающимся для своего времени явлением по его летным характеристикам и надежности. С позиций современных знаний по самолету можно было бы сделать много критических замечаний, однако, без детального рассмотрения особенностей самолета нужно быть осторожными в суждениях.
      Рассмотрим основные аэродинамические и динамические характеристики самолета "Илья Муромец". Начнем с аэродинамического качества; для его определения требуется очень ограниченный материал. Мы уже приводили расчет аэродинамического качества и получили Kmах6,3-6,6. Для того времени это довольно высокое качество. Эффективное удлинение крыльев llэ/S322/1407,3; в описаниях самолета дается полная несущая площадь вместе с горизонтальным оперением; мы принимаем, как обычно, площадь без оперения S140 м2; Cх01,28F/S 0,13.
      Максимальное аэродинамическое качество соответствует коэффициенту подъемной силы
      эта величина явно выше максимального значения, и полученное теоретически максимальное аэродинамическое качество практически использовано быть не может. Допуская Cу1,0-1,2, получим Cx0,13+Cy2/pl0,18-0,20 и К5,6-- 6,0. Для уменьшения Cун, если нет возможности уменьшить вредную площадь F, следует увеличить среднюю хорду крыла bcр; так, для получения Cу1,2 нужно крылья уширить таким образом, чтобы их площадь стала равной примерно 200 м2.
      Вторым важнейшим параметром самолета является максимальная подъемная сила Ymах и отношения подъемной силы к весу пустого самолета и к полетному весу. Используя полученное в разделе "Анализ грузоподъемности самолетов" значение Ymах8650 кГ, будем иметь:
      Заметим, что здесь значение Ymах несколько завышено, так как значение Cу, соответствующее Ymах, не может быть использовано. Упрощенными характеристиками являются параметры КGоG0/(Nl)2/3 и КGG/(Nl)2/3, которые для самолета "Илья Муромец" будут соответственно КGо 5,6 и КG7,3. Величина КGо для самолета "Илья Муромец" только немного выше, чем у тяжелых самолетов 1935-- 1945 гг.
      Для более полной характеристики самолета приводим результаты аэродинамического расчета. На рис. 4 дана поляра самолета с крылом тонкого профиля и относительной кривизной средней линии около 7%. Такие профили дают сильное увеличение сопротивления на малых Cу, однако, самолет "Илья Муромец" при малых Cу не летает; даже при максимальной скорости на малой высоте при q58, G/S37 кГ/м2, Cу0,64.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10