Современная электронная библиотека ModernLib.Net

Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

ModernLib.Net / Научно-образовательная / Вайнберг Стивен / Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы - Чтение (стр. 13)
Автор: Вайнберг Стивен
Жанры: Научно-образовательная,
Математика,
Физика и астрономия

 

 


Картина кварков была применена в 60-е гг. к огромному количеству физических задач, связанных с протонами, нейтронами, мезонами и другими частицами, предположительно состоящими из кварков, и во всех случаях привела к хорошим результатам. Однако все попытки экспериментаторов в 60-е и начале 70-х гг. вытащить кварки из тех частиц, в которых они предположительно содержатся, полностью провалились. Это выглядело ненормально. Еще с тех пор, как Томсон вырвал электроны из атомов в катодно-лучевой трубке, всегда удавалось разбить любую составную систему вроде молекулы, атома или ядра на отдельные частицы, из которых она состоит. Почему же было невозможно выделить свободные кварки?

Картина кварков обрела смысл с развитием в начале 70-х гг. квантовой хромодинамики, современной теории сильных ядерных сил, в рамках которой запрещен любой процесс, в котором может быть выделен свободный кварк. Прорыв произошел в 1973 г., после того, как независимые вычисления Дэвида Гросса и Фрэнка Вильчека из Принстона и Дэвида Политцера из Гарварда показали, что квантовые теории определенного типа[142] обладают удивительным свойством «асимптотической свободы»: все силы, действующие между частицами, уменьшаются с ростом энергии[143]. Как раз такое уменьшение сил и наблюдалось еще в 1967 г. в опытах по рассеянию частиц при высоких энергиях[144], но в 1973 г. впервые было показано, что могут существовать теории, в которых силы ведут себя подобным образом. Этот успех быстро привел к тому, что одна из таких квантовых теорий поля – теория кварков и глюонов, получившая название квантовой хромодинамики, была признана правильной теорией сильных взаимодействий.

Первоначально считалось, что в процессах соударения элементарных частиц нельзя наблюдать глюоны, так как они очень тяжелые, и попросту не хватает энергии для рождения частиц столь большой массы. Вскоре после открытия явления асимптотической свободы некоторые теоретики предположили[145], что глюоны наоборот вообще не имеют массы, как фотоны. Если это так, то факт ненаблюдения глюонов и кварков в свободном состоянии можно объяснить тем, что обмен безмассовыми глюонами между кварками и самими глюонами порождает дальнодействующие силы, не позволяющие в принципе оторвать кварки или глюоны друг от друга. Сейчас принято считать[146], что если вы попытаетесь разбить на составные части, например, мезон (частицу, состоящую из кварка и антикварка), то требующаяся для этого сила возрастает при удалении кварка и антикварка все дальше друг от друга, до тех пор пока в конце концов вам не потребуется затрачивать на это разъединение такое количество энергии, которого будет достаточно для рождения новой кварк-антикварковой пары. В результате родившийся из вакуума антикварк подсоединяется к первоначальному кварку, а кварк из вакуума – к антикварку, так что вместо свободных кварка и антикварка вы получаете две кварк-антикварковых пары, т.е. опять два мезона. Часто используется такой образ: разделение кварков напоминает попытку разделить два конца куска упругой струны. Вы тянете, тянете струну, так что в конце концов, когда прилагаемое вами усилие станет достаточным, струна рвется, но при этом вы все равно не получаете два изолированных конца струны, а получаете две струны поменьше с двумя концами у каждой. Гипотеза, что кварки и глюоны никогда нельзя в принципе наблюдать изолированно друг от друга, стала частью общепринятой системы взглядов в современной физике элементарных частиц[147], и тем не менее это нисколько не мешает нам описывать протоны, нейтроны и мезоны состоящими из кварков. Мне трудно представить что-либо, что вызвало бы большее отвращение у Эрнста Маха.

Теория кварков была лишь одной ступенью в непрерывном процессе переформулировки физической теории с помощью понятий, все более фундаментальных и, одновременно, все более далеких от повседневного опыта. Как же можно рассчитывать создать теорию, основанную только на наблюдаемых величинах, если ни одно из привычных нам понятий, возможно, что даже такие понятия, как пространство и время, не входят в число фундаментальных понятий наших теорий? Мне кажется совершенно невероятным, что позитивистский подход может быть полезным в будущем.

Метафизика и эпистемология по крайней мере старались играть конструктивную роль в науке. Не так давно наука подверглась атаке со стороны недружественных комментаторов, объединившихся под знаменем релятивизма. Философы-релятивисты отрицают стремление науки к открытию объективной истины[148]; они рассматривают ее всего лишь как еще одно социальное явление, не более фундаментальное, чем культ плодородия или шаманство.

Философский релятивизм частично уходит корнями в сделанное философами и историками науки открытие, что в процессе признания научных идей очень много субъективизма. Мы уже обсуждали ту роль, которую играют эстетические суждения в признании или отрицании новых физических теорий. Для ученых все это давно известно (хотя философы и историки науки пишут иногда так, как будто мы слышим об этом в первый раз). В знаменитой книге «Структура научных революций»[149] Томас Кун сделал следующий шаг и попытался доказать, что во время научных революций те понятия (или парадигмы), с помощью которых ученые оценивают теории, сами меняются, так что новые теории просто нельзя судить по дореволюционным стандартам. Многое в книге Куна полностью соответствует моему собственному опыту в науке. Но в последней главе Кун упорно атаковал ту точку зрения, что развитие науки приближает нас к объективной истине: «Мы можем, точнее говоря, должны отказаться от представления, явного или неявного, что изменения парадигмы приближают ученых и их последователей все ближе и ближе к истине». Позднее книга Куна, кажется, стала читаться (или, по крайней мере, цитироваться) как манифест общей атаки на предполагаемую объективность научного знания.

Кроме того, начиная с работы Роберта Мертона, в 30-е гг. усилилась тенденция со стороны антропологов и социологов рассматривать занятия наукой (или, по крайней мере, наукой, отличной от социологии и антропологии) теми же методами, которые используются для исследования других социальных явлений. Конечно, наука является социальным явлением, со своей системой ценностей, снобистскими замашками, интересными методами совместной деятельности и подчинения. Так, Шарон Тревик провела годы в обществе экспериментаторов, занимавшихся физикой элементарных частиц, в Стэнфордском ускорительном центре и лаборатории КЕК в Японии и описала то, что она видела, с точки зрения антрополога. Эта ветвь большой науки является естественным полем для изучения антропологами и социологами, так как ученые, с одной стороны, придерживаются древней традиции, поощряющей личную инициативу, и, с другой стороны, вынуждены при проведении современных экспериментов работать вместе в командах, насчитывающих сотни человек. Как теоретику мне не приходилось работать в подобных группах, но многие другие наблюдения Тревик, содержат, по-моему, много верного, например:

«Физики рассматривают себя членами элитарной группы, членство в которой определяется только личными научными заслугами. При этом предполагается, что все имели честный старт. Принадлежность к группе подчеркивается крайней непринужденностью в одежде, одинаковым видом кабинетов и обращением друг к другу по именам. Индивидуализм и соревнование считаются допустимыми и эффективными: иерархия в сообществе строится как меритократия29), производящая хорошую физику. Однако американские физики подчеркивают, что наука недемократична: решения, касающиеся целей научной деятельности, не должны приниматься большинством голосов сообщества и не должно быть равного доступа для всех к ресурсам лабораторий. Большинство японских физиков придерживаются по этим пунктам противоположного мнения…»[150]

Во время подобных исследований антропологи и социологи обнаружили, что даже процесс изменений в научной теории является общественным делом. В одном из недавних обзоров отмечалось, что «научные истины, по существу, являются широко цитируемыми общественными соглашениями относительно того, что представляет собой “действительность”, возникающими в результате “научного процесса” переговоров»[151]. Наблюдения за учеными в процессе работы позволили французскому философу Бруно Латуру и английскому социологу Стиву Булгару заметить, что «переговоры относительно того, что считать доказательством, или что является хорошим экспериментом, столь же беспорядочны, как и любой спор между судейскими или политиками».

Казалось бы, остается всего лишь один шаг от этих полезных исторических и социологических наблюдений до радикальной точки зрения, что конкретное содержание общепринятых научных теорий определяется общественной и исторической обстановкой, в которой данная теория развивалась. (Развитие именно такой точки зрения иногда называют программой-максимум социологии науки.) Эта атака на объективность научного знания проявилась даже в заголовке книги Эндрю Пикеринга «Создание кварков»[152]. В заключительной главе он приходит к выводу: «Если учесть огромную тренировку физиков, занимающихся элементарными частицами, в применении сложной математической техники, то преобладание математики в их описании реальности не сложнее объяснить, чем пристрастие народа к своему родному языку. Точка зрения, которая отстаивается в этой главе, заключается в том, что при развитии взглядов на окружающий нас мир никто не обязан принимать во внимание то, что говорит наука двадцатого века». Пикеринг детально описывает большие изменения в направлении развития экспериментальной физики высоких энергий, произошедшие в конце 60-х – начале 70-х гг. Вместо здравого подхода (термин Пикеринга), заключавшегося в том, чтобы сосредоточить усилия на самых заметных явлениях в столкновениях частиц высоких энергий (например, фрагментация частиц на большое число других частиц, летящих в основном в направлении первичного пучка), экспериментаторы начали проводить предложенные теоретиками опыты по поиску редких событий, например таких, когда какая-то частица большой энергии летит после соударения под большим углом к направлению первичного пучка.

Действительно, в физике высоких энергий в те годы произошла смена приоритетов, во многом правильно описанная Пикерингом, но она диктовалась исторической миссией физики. Протон состоит из трех кварков, окруженных облаком непрерывно возникающих и пропадающих глюонов и кварк-антикварковых пар. В большинстве соударений между протонами энергия начальных частиц уходит на общее перемешивание этих облаков, напоминающее результат столкновения двух грузовиков с мусором. Такие соударения крайне интересны, но они слишком сложны, так что современная теория кварков и глюонов не позволяет нам рассчитать их результаты. Таким образом, они неинтересны с точки зрения проверки этой теории. Однако изредка кварк или глюон в одном из протонов испытывает лобовое соударение с кварком или глюоном из другого, так что их энергии оказывается достаточно на то, чтобы выбить кварк или глюон большой энергии из области соударения. Вероятность этого процесса мы можем вычислить. В подобном соударении могут рождаться и новые частицы, например W и Z – переносчики слабых ядерных сил. Их изучение необходимо для лучшего понимания объединения слабых и электромагнитных взаимодействий. Именно для детектирования таких редких событий и планируются сегодня все эксперименты. И все же Пикеринг, который, насколько я могу судить, понимает теоретическое обоснование этих действий очень хорошо, продолжает описывать смену акцентов в физике высоких энергий просто как смену моды[153], вроде перехода от импрессионизма к кубизму или от коротких юбок к длинным.

Переход от очевидного наблюдения, что наука является социальным явлением, к выводу, что окончательный продукт науки – наши теории – такие, какие они есть, из-за воздействия общественных или исторических сил, представляется просто логической ошибкой. Группа альпинистов может долго спорить о лучшем маршруте на вершину, причем эти споры могут быть связаны с историческими причинами и социальным составом группы, но в конце концов хороший маршрут либо бывает найден, либо нет, и когда альпинисты взбираются на вершину, они могут точно ответить на этот вопрос. (Никто не издаст книгу об альпинизме с названием «Создание Эвереста».) Я не могу доказать, что с наукой все обстоит точно так же, но весь мой опыт ученого говорит об этом. «Переговоры» об изменениях в научных теориях продолжаются, ученые снова и снова меняют свою точку зрения в ответ на вычисления и эксперименты, пока тот или иной взгляд не обнаруживает несомненные следы объективного успеха. Я определенно чувствую, что мы обнаруживаем в физике что-то реальное, нечто, существующее независимо от тех социальных и исторических условий, которые позволили нам это открыть.

Где же тогда истоки безудержной атаки на объективность научного знания? Думаю, что один из источников – старое пугало позитивизма, на этот раз используемое для изучения самой науки. Если кто-то отказывается обсуждать то, что непосредственно не наблюдается, тогда и нельзя серьезно относиться к квантовым теориям полей, принципам симметрии или, вообще, к законам природы. То, что могут наблюдать философы, социологи и антропологи, – это реальное поведение живых ученых, а такое поведение никогда не удается описать с помощью общих законов. Напротив, желанной, хотя и ускользающей целью ученых является прямая проверка научных теорий, и, когда это удается, ученые убеждаются в реальности этих теорий.

Возможна и другая причина атаки на реализм и объективность науки, значительно менее возвышенная. Представьте, что вы – антрополог, изучающий культ грузовых самолетов на одном из островов Тихого океана. Островитяне верят, что они могут приманить грузовой самолет, доставлявший им во время Второй мировой войны кучу замечательных вещей, обеспечивших их процветание. Для этого они сооружают деревянные постройки, имитирующие радарные установки и радиоантенны. Вполне соответствовало бы природе человека, если бы этот антрополог и другие социологи и антропологи в аналогичных обстоятельствах чувствовали бы свое превосходство. Ведь в противоположность объектам их изучения они-то знали бы, что эти верования не основаны на объективной реальности – никакой С-47 с грузом не привлечь деревянными радарами. Так разве было бы удивительно, если бы антропологи и социологи, обратившись к исследованию работы ученых, попытались бы воссоздать этот восхитительный дух превосходства, отрицая объективную реальность научных открытий?

Релятивизм – это только одна из сторон более широкой и радикальной атаки на саму науку[154]. Фейерабенд призвал к формальному отделению науки от общества[155], вроде отделения церкви от государства, считая, что «наука есть просто одна из многих идеологий, движущих общество вперед, и так ее и следует рассматривать». Философ Сандра Хардинг пишет, что «физика, химия, математика и логика несут на себе следы их конкретных создателей не меньше, чем антропология или история»[156]. Теодор Рожак настаивает, что мы должны изменить «фундаментальное ощущение научного мышления… даже если для этого придется решительно пересмотреть профессиональный характер науки и ее место в нашей культуре»[157].

Похоже, что все эти радикальные критики науки мало влияют, если вообще влияют, на самих ученых. Мне неизвестен ни один работающий ученый, который воспринимает этих философов всерьез[158]. Та опасность, которую они несут науке, связана с их возможным влиянием на тех, кто сам не участвует в научной деятельности, но от кого мы все зависим, особенно на тех, кто финансирует науку, а также на новое поколение ученых. Недавно журнал Nature процитировал британского правительственного чиновника[159], занимающегося вопросами гражданской науки и одобрительно отозвавшегося о книге Брайана Эпплъярда[160], в которой обосновывается тезис, что наука враждебна человеческому духу.

Я подозреваю, что близок к истине Джеральд Холтон, который рассматривает решительную атаку на науку как один из симптомов более широкой враждебности к западной цивилизации, ожесточившей сердца многих западных интеллектуалов, начиная с Освальда Шпенглера[161]. Современная наука является очевидной мишенью: ведь многие цивилизации породили великие произведения искусства и литературы, но со времен Галилея научные исследования практически полностью определяются Западом.

Мне кажется, что совершается трагическая ошибка и эта враждебность направлена не в ту сторону. Даже самые чудовищные применения западной науки, например ядерное оружие, представляют всего лишь еще один пример бесчисленных попыток человечества разрушить само себя, каким бы оружием это не совершалось. Кладя на другую чашу весов все мирные применения науки и ее роль в освобождении человеческого духа, я все же считаю, что современная наука, наряду с демократией и законами контрапункта в музыке, есть подарок Запада миру и мы вправе этим гордиться.

В конце концов это различие исчезнет. Современные знания и научные методы быстро проникали в другие страны, не принадлежащие западному миру, например в Индию и Японию. Я предвижу день, когда наука перестанет ассоциироваться с Западом и станет общим достоянием человечества.

Глава VIII. Блюзы ХХ века

Блюзы,

Блюзы двадцатого века,

Как они удручают меня.

Кто

Спасется от утомительных

Блюзов двадцатого века.

Ноель Кауард. Кавалькада

Как бы далеко мы не углубились в рассмотрение цепочки вопросов о материи и силах, действующих в природе, все ответы сводятся к стандартной модели элементарных частиц. На каждой конференции по физике высоких энергий, начиная с конца 70-х гг., экспериментаторы докладывают о все большей точности совпадения результатов опытов с предсказаниями этой модели. Казалось бы, что физики, занимающиеся высокими энергиями, должны испытывать чувство удовлетворения. Но почему же тогда мы находимся в состоянии уныния, как будто под влиянием меланхолического блюза?

Прежде всего, стандартная модель описывает электромагнитные, слабые и сильные взаимодействия, но оставляет в стороне четвертую силу, а в действительности, первую из всех, ставших известными человеку, – силу тяготения. Такой пропуск – не просто результат забывчивости: как мы увидим, при попытке описывать гравитацию на том же языке, который мы используем в стандартной модели для описания других взаимодействий, т.е. на языке квантовой теории поля, возникают непреодолимые математические трудности. Во-вторых, хотя сильные ядерные взаимодействия и включены в стандартную модель, они все-таки выглядят не составной частью единой картины, а стоят особняком от электромагнитных и слабых взаимодействий. В-третьих, хотя электромагнитные и слабые взаимодействия и рассматриваются в рамках стандартной модели единым образом, между этими взаимодействиями существуют очевидные различия (например, в обычных условиях слабые ядерные силы во много раз меньше электромагнитных сил). У физиков есть общие представления о том, как возникает различие между электромагнитными и слабыми взаимодействиями, но все же мы не до конца понимаем причины этого различия. Наконец, даже если отвлечься от проблемы объединения четырех сил природы, все равно в самой стандартной модели есть множество свойств, которые не вытекают из фундаментальных принципов (как бы нам хотелось), а просто берутся из эксперимента. Среди свойств, кажущихся произвольными, – список частиц, существующих в рамках модели, число параметров, таких как отношения масс частиц, и даже сами симметрии. Можно без труда представить себе модель, в которой одно из этих свойств или все сразу будут иными, чем в стандартной модели.

Конечно, стандартная модель явилась огромным шагом вперед по сравнению с путаницей приближенных симметрий, плохо сформулированных динамических предположений и голых фактов, которую изучали в институте физики моего поколения. Но очевидно, что стандартная модель не является окончательным ответом, и чтобы выйти за ее пределы, нужно понять все ее недостатки.

Тем или иным образом все проблемы стандартной модели упираются в явление, названное спонтанным нарушением симметрии. Открытие этого явления, сначала в физике твердого тела, а затем и в физике частиц, стало одним из великих достижений науки ХХ в. Главный успех был достигнут в объяснении различий между слабыми и электромагнитными взаимодействиями, поэтому для объяснения явления спонтанного нарушения симметрии лучше всего начать с электрослабой теории.

Эта теория является частью стандартной модели, имеющей дело со слабыми и электромагнитными взаимодействиями. Она основана на точном принципе симметрии, утверждающем, что законы природы не меняют своей формы, если заменить поля электронов и нейтрино на смешанные поля, например, взять одно поле, состоящее на 70 % из нейтрино и на 30 % из электрона, и другое поле, состоящее на 30 % из нейтрино и 70 % из электрона. При этом одновременно необходимо в тех же пропорциях перемешать поля других семейств частиц, например, кварков u и d. Такой принцип симметрии называется локальным, поскольку предполагается, что законы природы остаются неизменными, даже если смесь полей будет меняться со временем или от точки к точке в пространстве. Но есть и другое семейство частиц, существование которого диктуется указанным принципом симметрии, примерно таким же образом, как существование гравитационного поля диктуется симметрией между разными координатными системами. Это семейство состоит из фотона и частиц W, Z, причем эти поля также должны перемешиваться друг с другом, если мы перемешиваем поля электронов и нейтрино и поля кварков. Обмен фотонами обуславливает электромагнитные силы, а обмен частицами W и Z генерирует слабые ядерные силы, так что симметрия между электроном и нейтрино является также симметрией между электромагнитными и слабыми ядерными силами.

Однако подобная симметрия определенно отсутствует в окружающей нас природе, и поэтому-то ее так долго не могли открыть. Например, электроны и частицы W, Z обладают массами[162], а нейтрино и фотоны не имеют массы. (Слабые силы во много раз слабее электромагнитных именно благодаря большой массе W, Z.) Иными словами, симметрия, связывающая электроны, нейтрино и другие частицы, есть свойство основных уравнений стандартной модели, определяющих свойства элементарных частиц, но в то же время, эта симметрия не выполняется для решений этих уравнений, т.е. для свойств самих частиц.

Чтобы понять, как это возможно, чтобы уравнения имели симметрию, а решения – нет, предположим, что наши уравнения полностью симметричны относительно двух типов частиц (например, u-, d-кварков), и мы хотим найти решения этих уравнений, определяющие массы обеих частиц. Можно было бы предположить, что симметрия между двумя типами кварков приведет к тому, что и их массы окажутся одинаковыми, но это не единственная возможность[163]. Симметрия уравнений не исключает возможности того, что решение будет давать массу u-кварка больше, чем масса d-кварка, но при этом обязательно должно существовать второе решение уравнений, дающее массу d-кварка на столько же большую массы u-кварка. Таким образом, симметрия уравнений необязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности решений. В этом простом примере реальные свойства кварков будут соответствовать одному или другому решению, демонстрируя нарушение симметрии исходной теории. Заметим, что на самом деле безразлично, какое из двух решений реализуется в природе, если единственной разницей между кварками u и d является разница в их массах, тогда разница между двумя решениями будет соответствовать тому, какой из кварков мы назовем u, а какой d. Природа, как мы ее знаем, соответствует одному решению всех уравнений стандартной модели, при этом безразлично какому, если только все решения связаны точными принципами симметрии.

В подобных случаях говорят, что симметрия нарушена, хотя лучше было бы говорить, что симметрия «спрятана», так как уравнения продолжают обладать симметрией, и именно уравнения определяют свойства частиц. Описанное явление называется спонтанным нарушением симметрии, так как ничто не нарушает симметрию уравнений теории, а нарушение симметрии возникает спонтанно в различных решениях уравнений.

Красота наших теорий во многом определяется принципами симметрии. Именно поэтому первые работы по спонтанному нарушению симметрии в начале 60-х гг. вызвали столь большой резонанс. Перед нами вдруг открылось, что в законах природы есть значительно больше симметрии, чем это кажется на основе анализа свойств элементарных частиц. Нарушенная симметрия – вполне платоновское понятие: та реальность, которую мы наблюдаем в наших лабораториях есть лишь искаженное отражение более глубокой и более красивой реальности уравнений, отображающих все симметрии теории.

Обычный постоянный магнит является хорошим реалистичным примером нарушенной симметрии. (Этот пример особенно подходит потому, что идея спонтанного нарушения симметрии появилась впервые в квантовой физике в 1928 г., в построенной Гейзенбергом теории постоянного магнетизма.) Уравнения, определяющие поведение атомов железа и магнитное поле в магните, нагретом до очень высокой температуры (скажем, 800 °С), обладают точной симметрией по отношению ко всем направлениям в пространстве: ничто в этих уравнениях не отличает север от юга или восток от запада. Однако если кусок железа охладить ниже 770 °С, он внезапно приобретает определенным образом направленное магнитное поле[164], нарушая тем самым симметрию между направлениями. Расе крохотных существ, родившихся и проживших всю жизнь внутри постоянного магнита, потребовалось бы много времени на то, чтобы осознать, что истинные законы природы обладают полной симметрией относительно разных направлений в пространстве, и выделенное направление возникает только потому, что спины атомов железа спонтанно выстраиваются в одну сторону, создавая магнитное поле.

Подобно существам внутри магнита, мы недавно обнаружили симметрию, которая нарушается в нашей Вселенной. Эта симметрия связывает слабые и электромагнитные силы[165], а ее нарушение проявляется, например, в разнице между безмассовым фотоном и очень тяжелыми частицами W и Z. Большая разница между нарушением симметрии в стандартной модели и в магните заключается в том, что происхождение намагниченности хорошо известно. Она возникает за счет известных сил взаимодействия между соседними атомами железа, стремящимися выстроить свои спины параллельно друг другу. Стандартная модель гораздо менее изучена. Ни одна из известных сил, входящих в стандартную модель, недостаточно велика, чтобы принять на себя ответственность за нарушение симметрии между слабыми и электромагнитными взаимодействиями. Главное, чего мы все еще не знаем о стандартной модели, – это что является причиной нарушения электрослабой симметрии.

В первоначальной версии стандартной теории слабых и электромагнитных взаимодействий нарушение симметрии между этими взаимодействиями было приписано новому полю, специально для этой цели введенному в теорию. Как и магнитное поле в обычном постоянном магните, это поле может спонтанно поворачиваться, указывая некоторое направление, правда, не в обычном пространстве, а на воображаемом циферблате, направление стрелок на котором отличает электроны от нейтрино, фотоны от частиц W, Z и т.п. То значение поля, при котором нарушается симметрия, принято называть вакуумным значением, так как поле принимает это значение в пустоте, в области вдали от воздействия других частиц. После четверти века исследований мы так и не знаем, верна ли такая простая картина спонтанного нарушения симметрии, но пока эта картина остается наиболее приемлемым объяснением.

Не первый раз, желая удовлетворить некоторым требованиям теории, физики предполагают существование новых полей. В начале 30-х гг. беспокойство ученых вызывал закон сохранения энергии в процессе бета-распада радиоактивных ядер. В 1930 г., для того чтобы восстановить баланс энергии, казалось бы, бесследно теряемой в этом процессе, Вольфганг Паули предположил, что существует частица с подходящими свойствами, названная им нейтрино, которая и уносит недостающую энергию. Трудноуловимое нейтрино было в конце концов экспериментально обнаружено[166] более чем два десятилетия спустя. Утверждать существование чего-то, что еще никогда не наблюдалось, – дело рискованное, но иногда приносящее успех.

Как и другие поля в квантово-механической теории, это новое поле, ответственное за нарушение симметрии электрослабых взаимодействий, должно переносить энергию и импульс в виде сгустков или квантов. Электрослабая теория утверждает, что, по крайней мере, один из этих квантов должен наблюдаться как новая элементарная частица. За несколько лет до того, как Салам и я разработали теорию объединения слабых и электромагнитных сил, основанную на идее спонтанного нарушения симметрии, ряд теоретиков дал математическое описание простых примеров подобного нарушения симметрии[167]. Особенно ясно это удалось сделать в 1964 г. Питеру Хиггсу из Эдинбургского университета. Поэтому новую частицу, с необходимостью возникшую в первоначальной версии электрослабой теории, назвали хиггсовской частицей.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22