Современная электронная библиотека ModernLib.Net

Эволюционизм. Том первый: История природы и общая теория эволюции

ModernLib.Net / Философия / Лев Кривицкий / Эволюционизм. Том первый: История природы и общая теория эволюции - Чтение (Ознакомительный отрывок) (стр. 25)
Автор: Лев Кривицкий
Жанр: Философия

 

 


Эта сила универсальна и её действию подвержены все без исключения тела Вселенной. Таким образом, математически строго было доказано, что мир земной и мир небесный не имеют существенного различия, и тот и другой существует и развивается по одним и тем же законам. Из теории Ньютона прямо следовало, что планеты и кометы притягиваются к Солнцу, а спутники – к планетам. Ньютон нашел, что в результате воздействия небесных тел друг на друга возможны отклонения от законов Кеплера. На основе своей теории он смог объяснить особенности движения Луны, прецессию, приливы и отливы, сжатие Юпитера и другие малопонятные в то время факты.

Физическая теория Ньютона завершила крушение астрономического геоцентризма, поскольку выявила полнейшую невозможность вращения массивного и инертного Солнца вокруг несравнимо более лёгкой Земли. На смену выделенному центру вращения Вселенной пришло представление о вездесущей силе притяжения, действующей между центрами тяжести всех без исключения тел и заставляющей менее массивные тела падать на более массивные. Вращение небесных тел с этой точки зрения оказывалось не более чем падением, но осложнённым «проскакиванием» более лёгкого тела по касательной вследствие его достаточно отдалённого положения и равновесного распределения сил.

Признание теории Ньютона означало отсутствие и выделенного направления в мировом процессе, отсутствие в природе абсолютного геоцентрического верха и низа. Низ не является исключительным свойством Земли, верх не является свойством «неба» как некой противоположной Земле субстанции. На каждой планете и звезде есть свой «низ», образуемый её полем тяготения. Но, распространяя земное тяготение на весь мир, придав ему значение принципа всемирного тяготения, теория Ньютона наталкивалась на невозможность геоцентрического объяснения этого принципа. Ньютону пришлось даже в самом конце «Математических начал натуральной философии» апеллировать к Богу как причине и источнику всемирного тяготения. Антропоморфизм подобного объяснения не шокировал современников Ньютона. Но вся логика естествоиспытательского поиска восставала против подобного сверхъестественного «негеоцентризма», нацеливала на раскрытие неатропоморфного негеоцентрического источника тяготения.

Сформулированные Ньютоном законы механики и закон всемирного тяготения более чем на два столетия предопределили дальнейшее развитие всей физической науки, а в астрономии они явились тем основанием, на котором в особую отрасль астрономической науки выделилась небесная механика – наука о движении небесных тел. К развитию этой науки самое прямое отношение имели такие замечательные ученые, как Галлей, Клеро, Даламбер, Лагранж, Эйлер и другие. Небесная механика, в том виде, как она сейчас существует, получила завершение в начале XIX века в трудах современника и участника Великой Французской революции Пьера Симона Лапласа. Таким образом, в XIX веке фундамент классической физики и астрономии был в основном возведен. Возникла классически завершённая, грандиозная и всеобъемлющая механистическая картина мира, пришедшая на смену древней, но так же, как и она, претендующая на вечную и абсолютную истинность.

В основе механистической картины мира лежало убеждение в том, что мир устроен по законам, открытым классической механикой, и что законы классической механики суть универсальные законы самой природы, открытые наукой. Всё в мире движется и взаимодействует по этим законам. Философской основой механицизма стал так называемый лапласовский детерминизм. Основной принцип этого типа понимания закономерной обусловленности Вселенной был сформулирован выдающимся французским естествоиспытателем, космологом и философом П. Лапласом в 1795 году в работе «Опыт философии теории вероятностей». «Мы должны рассматривать настоящее состояние вселенной, – писал он, – как следствие её предыдущего состояния и причину последующего. Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу и относительное положение всех её составных частей, обнял бы в одной формуле движения величайших тел вселенной наравне с движениями мельчайших атомов» (Лаплас П.С. Опыт теории вероятностей. – М., 1908. с.9). Как видно из приведённого отрывка, для лапласовского детерминизма характерна, прежде всего, претензия на описание всей Вселенной, исчерпание её суммой механических взаимодействий. Всякое движение во Вселенной подчинено взаимодействию причин, то есть взаимосвязи механически действующих движущих сил. Вселенная вся без остатка состоит из механических тел, которые соударяются друг с другом, притягивают друг друга, либо вступают в иные механические взаимодействия. Каждое из этих взаимодействий можно описать средствами векторной геометрии. Вселенная механицистов напоминает раз и навсегда заведённые часы, и вполне естественно, что, зная в данный момент времени положение, направление и импульс движущихся тел, можно вычислить состояние Вселенной во все последующие моменты времени.

Геоцентризм подобной картины мира гнездится, прежде всего, в наивном сведении всех без исключения природных взаимодействий к земноподобному механизму взаимодействий, в механическом «заземлении» Вселенной.

Этот взгляд на вещи приносил успех за успехом, пока наука действительно имела дело с механически перемещающимися макроскопическими телами. Различные механические закономерности могли применяться и к механическим возмущениям, вызванным тяготением ещё не открытой планеты, и к соударениям молекул в газе, и к строительным конструкциям на Земле.

<p>4.3. Квантово-релятивисткая картина Космоса</p>

В начале XX века наука втянула в орбиту своего изучения такие явления и процессы, по отношению к которым механистический способ объяснения и описания, обладавший, казалось, абсолютной универсальностью и всесилием, вдруг неожиданно забуксовал. Случилось это впервые в 1900 г, когда Макс Планк ввёл в научный обиход свою знаменитую постоянную. Когда подогнать микроскопические явления под обычный способ описания не удалось, Планк, не имея в виду ничего дурного для механистического мировоззрения, предложил оригинальную формулу, в которую хорошо укладывались имеющиеся в распоряжении учёных факты, но которая содержала в себе некоторую странность. Планк начал саму механику процесса квантовать, то есть рассматривать не независимо от механически описываемого процесса, а в зависимости от определённой порции, кванта действия. Всем известно, что макроскопическое тело можно расчленить на любые куски, большие или меньшие, если применить к этому телу энергию, большую, чем сила его сопротивления. В микромире же, как следовало из формулы, энергия распределяется лишь определёнными порциями, квантами. Сам того не сознавая, Планк открыл негеоцентрическую прерывность микромира. Он долгое время считал трудности восстановления макроскопической непрерывности временными и вполне преодолимыми дальнейшим развитием науки. Он и сам прилагал к этому немалые усилия, и последующие исследователи долгое время ещё повторяли его ошибку, всеми силами пытаясь ввергнуть старую добрую классическую механику в не подчиняющуюся ей область квантовых явлений и тем самым восстановить в правах пошатнувшееся на троне механистическое мировоззрение, а заодно и прежний уютный хорошо освоенный рассудком геоцентризм.

Лишь гораздо позже Планк осознал, что во введённом им кванте действия было заложено нечто до того времени неслыханное, способное радикально преобразовать физическое мышление. А в свой звёздный час на рубеже веков он был столь скромен, что признавал за собой лишь открытие некоторого реального физического явления. Но причиной этого была не какая-то особая всепобеждающая скромность, не самоограничение как качество личности, а тяготевшие над мировоззрением учёного механицизм и геоцентризм. Единственным человеком, отстаивавшим реальность квантов, был в то время Альберт Эйнштейн.

А после 1900 г. открытия, подрывающие механистические каноны, потекли потоком и составили содержание научной революции начала XX века. Открытие радиоактивности, сложной структуры атома, электрона как элементарной частицы, никак не укладывающейся в механистическую схему движения по причине своей принципиальной немакроскопичности, внесли первоначально чудовищную, ни с чем не сравнимую сумятицу в головы учёных. «Сумасшедшие» результаты экспериментов как будто нарочно сводились к тому, чтобы компетентные в науке люди потеряли ориентировку в хорошо понимаемом прежде мире. Часть физиков стала искать убежище для «расстроенного» мировоззрения в идеализме, – главным образом субъективном. И это не случайно. Сами объекты вели себя так, будто их проявления суть порождения самого человеческого субъекта.

Вопросы, вставшие перед учёными в самом начале века, были только прелюдией к еще более трудным вопросам, поставленным наукой вплоть до сегодняшнего дня. Решение этих вопросов, давшееся науке ещё более трудно, чем их постановка, знаменовало последовательное разрушение механистической картины мира и соответствующего ей научного мировоззрения.

Одним из чрезвычайно важных этапов на этом пути было создание теории относительности, первый вариант которой был опубликован А. Эйнштейном в 1905 году. Уже специальная теория относительности содержала «сумасшедшие» положения и идеи, до основания переворачивающие прежнее земное видение физического мира. В это видение никак не укладывалось отсутствие сложения скоростей при движении к свету и от него, относительность времени в различных точках пространства, то есть отказ от ньютоновского абсолютного времени, годного для всех областей Вселенной и как бы приурочивающего время всех без исключения объектов к нашему земному существованию. «Унижение» земноподобного времени вызвало наибольшее сопротивление современников, несмотря на повсеместное признание в науке доказательности и объяснительной силы новой теории. Так называемый «парадокс близнецов» был первоначально выдвинут для опровержения этой теории, исходя из казавшегося полнейшим абсурдом утверждения о различии возрастов людей одного возраста, один из которых находился на земле, а другой двигался с высокой скоростью, находясь в космическом путешествии.

Дальнейшее обобщение теории относительности, создание общей теории относительности (ОТО) привело к ещё более сногсшибательным негеоцентрическим следствиям. Четырёхмерный пространственно-временной континуум, созданный путём комбинации трёхмерного пространства и одномерного времени в единое негеоцентрическое пространство – время, вдобавок еще искривленное и причудливо закрученное в больших космических масштабах, был восстанием против геоцентризма не менее грандиозным, нежели теория Коперника.

Крах геоцентрической абсолютизации времени, его макроскопического обеднения, установление его абсолютной взаимосвязи с пространством означало поражение одного из самых незыблемых геоцентрических убеждений, вытекавших из всей совокупности человеческого земного опыта. Но не единственное. Самые незыблемые характеристики макроскопических тел, самые интимные проявления макроскопической телесности, к числу которых относятся объём, масса, длина, потеряли теперь своё постоянство. Длина тела при больших скоростях сокращается в направлении движения! И происходит это без потери соответствующего «кусочка» тела или его деформации в прямолинейном евклидовом пространстве. «Деформируется» само пространство-время, сжимается сам объективный мир! Что может быть еретичнее для земного взгляда на вещи? Ведь никакого чисто механического воздействия тело при этом не испытывает.

Все эффекты, полученные теорией относительности, проявляются в космических масштабах, превосходящих земные на много порядков. Они возникают при скоростях и массах, значительно превышающих условия движения в рамках земного макроскопического мира. Потому эти эффекты до Эйнштейна и остались незаметными. Их вообще невозможно перенести с Земли на космос подобно тому, как это произошло при создании закона всемирного тяготения.

Теория относительности и всемирному тяготению впервые дала негеоцентрическое объяснение. Теория Ньютона не объяснила, а скорее наглядно описала всемирное тяготение. Лишь искривление четырёхмерного пространства-времени, не замечаемое нашим плоскостным земным пространственным видением вещей, удовлетворительно показало ту «ловушку», в которую проваливаются все «тяготеющие» тела. Тем самым и негеоцентрическая недосказанность теории Ньютона получила новое осмысление: тяготеющие тела друг к другу «тянет» не какая-то таинственная сила, а искривление пространства-времени, которое они сами создают своей массой, своеобразная четырёхмерная впадина на теле нашей Вселенной.

В 1917 г. Эйнштейн распространяет свою теорию на космологию – физико-астрономическую теорию космоса. Научный подвиг Эйнштейна открыл людям новую Вселенную, очищенную от налипших на неё веками плоских геоцентрических наслоений. Суть своего открытия сам Эйнштейн излагал следующим образом. Жук, ползущий по шару, не замечает его кривизны, будучи уверен, что он ползёт по плоскости. По мнению Эйнштейна, его вклад заключался лишь в том, что он указал людям на их подобие этому жуку. Лишь благодаря науке люди убедились и в шарообразности Земли, которая обыденному восприятию представляется плоской.

Подарив людям новое видение космоса, Эйнштейн указал им на совершенно иной характер Вселенной, чем они думали раньше. В зависимости от плотности вещества вселенная должна быть особым образом закрученной в пространстве-времени, быть либо замкнутой, либо разомкнутой, расширяться, сжиматься или «пульсировать» (попеременно расширяться или сжиматься). Сам Эйнштейн считал вселенную обязательно замкнутой, но замечательный российский учёный Фридман показал его заблуждение, установив, что Вселенная, в соответствии с формулами теории относительности, может быть более разнообразной, чем полагал сам великий создатель этой теории. В мировоззрении же самого Эйнштейна, преобразовавшего в негеонентрическом направлении наши знания о космосе, содержался и весьма своеобразный геоцентризм. Эйнштейн в целом отрицал возможность существования множества миров, настаивая на существовании единой гармоничной Вселенной, устроенной по законам теории относительности. Эта установка не позволила ему до конца жизни осознать принципиальное своеобразие микромира и превратила в постоянного оппонента закономерностей квантовой механики, в развитие которой он также внёс весьма значительный вклад.

А наука о микромире в это время набирала всё большую силу и всё нагляднее показывала несводимость своих объектов к макроскопическим представлениям о них. Каждый новый шаг на пути познания микромира вызывал у самих великих первооткрывателей квантовой механики чудовищные сомнения, шатания и угрызения научной совести, мучения не только творчески-рационального характера, но и нравственного порядка. И по существу каждый новый шаг в развитии новой теории начинался с судорожной попытки восстановить в своих правах классическое механическое описание и тем самым реабилитировать земной взгляд на вещи. Заканчивалась же всякая такая попытка тем, что природа конкретно и недвусмысленно отрицала свою геоцентрическую суть и заставляла, как бы насильно, её исследователей создавать всё более причудливые математизированные способы её негеоцентрического отображения.

Сталкивая на огромных скоростях и расщепляя атомы, Резерфорд в 1911 году открывает атомное ядро. Сразу же возникает планетарная модель атома. Полный успех! Атом истолкован как маленькая гелиоцентрическая система, очень похожая на ту, в которой мы живем. Неудобство от делимости атома, уже по своему названию относимому к далее неделимым макроскопическим телам, казалось, было навеки преодолено геоцентрическим устройством его внутренней структуры. Но классическая электромагнитная теория Максвелла наводила на эту идиллическую картину весьма ощутимую тень: из формул следовало, что электрозаряженное тело, – в данном случае планетка-электрон, – двигаясь в поле другого электрозаряженного тела, должна была неизбежно терять энергию и, в конечном счёте, упасть па своё «солнышко» – на ядро. В 1913 г. выдающийся датский ученый Нильс Бор устранил эту трудность, объяснив квантованность и планетарность. Но какой ценой! Снова, как и у Планка, микромир наполнился негеоцентрической чертовщиной. Двигаясь по своим орбитам, электроны не должны были терять никакой энергии, пока не излучали её целой квантовой порцией, после чего переходили на более близкую орбиту. Модель Бора не вредила геоцентричности представления о планетарных электронах, но она наполняла негелиоцентрическим пониманием строение атома в целом.

В 20-е годы А. Эйнштейн дополнил квантование статистическим методом отображения микропроцессов, создав так называемую статистику Бозе-Эйнштейна. Это было сделано для того, чтобы устранить непонятную квантовую разорванность явлений микромира, увязать квантовую прерывность с пространственной непрерывностью (континуальностью) теории относительности. А обернулось всё совершенно иначе. В 1923 году Луи де Бройль под влиянием идей Эйнштейна и по велению собственной научной совести решил свести воедино на статистической основе данные о квантах как весьма необычных частицах и одновременно световых волнах, обладающих определённой длиной. Но то, что у него получилось, было ещё более невероятным и причудливым с макроскопической точки зрения, чем сами кванты. Получилось нечто вроде древнегреческого кентавра, существа с туловищем лошади и одновременно человека. Получилось ни то, ни сё, ни частица, ни волна, но нечто, проявляющее те или иные свойства в каждом конкретном случае.

В 1926 году Шредингер вывел основное волновое уравнение квантовой механики. Им руководило неистовое стремление придать квантовым явлениям наглядно представимый динамический характер. Но для этого пришлось измыслить нечто ещё более фантастичное, чем кентавры или химеры, – «волны-пилоты». Наконец, в 1927 г. Гейзенберг сформулировал своё знаменитое соотношение неопределённостей, доказав абсолютную, принципиальную невозможность одновременного сколь угодно точного измерения местоположения и импульса частиц. Причиной этого была макроскопическая неопределённость самих по себе объектов микромира, реагирующих с макроскопическими средствами наблюдения заранее непредсказуемым образом. Это проявило характер и самой макроскопичности, макроскопической определеннности, оказавшейся результатом огромного числа микроскопических взаимодействий, самих по себе не обладающих такой определённостью.

Но многие и многие учёные продолжали считать соотношение неопределённостей результатом неточности и субъективности наших знаний об объектах микромира самих по себе. Они не оставляли попыток восстановить макроскопические представления о микроскопических объектах. Одну из последних таких попыток предпринял известный американский физик Д. Бом, стремясь обнаружить у микропроцессов скрытые макроскопические параметры. Но природа неизменно разбивала розовую геоцентрическую мечту о скрытых макроскопических свойствах глубин материи, открывая исследователям, напротив, всё новые немакроскопические, всё более удивительные свойства и отношения. В XX веке сама природа сделалась для её исследователей независимо от их воли и желания пробным камнем негеоцентрического мировоззрения.

Глава 5. Негеоцентрический космизм

<p>5.1. Эволюция космологии и эталонная модель Вселенной</p>

История развития представлений об устройстве мироздания показывает, что это развитие проходит три основных этапа, соответствующие трём последовательно сменявшим друг друга на сцене человеческого познания научных картин мира. Первая из этих картин была всецело геоцентрической. Она принимала Землю за абсолютный центр мироздания, Солнце и планеты полагались вращающимися вокруг неё по идеально шарообразным сферам. В древней картине мира имело хождение чисто геоцентрическое понятие абсолютного верха и низа, вещественное наполнение мира сводилось к сочетанию четырёх элементов, или стихий, находимых на Земле, – земли, воды, воздуха и огня. При этом крупнейший философ-энциклопедист древности Аристотель считал характерной особенностью двух первых из них, – земли и воды, – стремление книзу, двух других, – воздуха и огня, – стремление кверху. Аристотель же создал первую в мире систематическую всеобъемлющую космологию. Она зиждилась на идее концентрического обтекания светящимися телами, жёстко закреплёнными на своих орбитах, небесной сферы.

Все несообразности и несовпадения наблюдательных данных с такой картиной скомпенсировал последователь Аристотеля, крупнейший астроном древности Клавдий Птолемей. Он объяснял отклонения в положении «светил» от положенных им по аристотелевской схеме мест так называемыми эпициклами. Если светило не оказывалось на положенном ему по Аристотелю месте, значит, оно по каким-то причинам, выяснить которые не представлялось возможным, «вильнуло» в сторону, «крутанулось» по проложенной рядом, неведомо откуда взявшейся дополнительной орбите. Система Птолемея была системой упорядочения гелиоцентрической видимости. Она вгоняла факты в прокрустово ложе описательных характеристик, получаемых земным наблюдателем, а объяснения явлений ограничивала схематизированным описанием перемещений тел соответственно их положениям, обнаруживаемым этим наблюдателем. Все неправильности, вытекавшие из геоцентрической схемы строения космоса, объяснялись комбинациями равномерных круговых движений. «Так оно движется», – вот и всё объяснение, на какое была способна делающая свои первые шаги конкретная наука. Когда действительность не укладывалась в схему, оставалось призывать на помощь либо умозрительное представление о хаосе, либо влияние всеблагих богов.

Вторая по счету научная картина мира, созданная людьми, механистическая картина мира Нового времени, была упорядочением уже не геоцентрической видимости, а внеземной действительности, упорядочением опять-таки геоцентрическим и антропоморфным. Мир не ограничивался теперь уже видимостью абсолютного центра движения объектов, образуемого земным положением человека-наблюдателя, но он ограничивался видимыми объектами, движущимися по аналогии с земными объектами и являющимися бесконечными повторениями гелиоцентрической системы.

Третья научная картина мира, возникшая в XX веке, квантово-релятивистская картина мира новейшего времени в истории человечества, разрушила и эту иллюзию. Она продемонстрировала негеоцентрическое строение мира, разнокачественность и разноуровненность различных процессов, чрезвычайно сложный и нетривиальный характер эволюционного единства мира.

Изучением Вселенной как некоторого вне нас существующего объекта в его проявлениях и пока еще непроявленных свойствах занимается особая наука – космология. Само название этой науки свидетельствует о том, что она стремится создать единое, максимально полное и эмпирически обоснованное учение о космосе, системе и устройстве мироздания.

Как уже отмечаюсь, слово «космос» древнегреческого происхождения, в языке Эллады оно означало не просто «мир как таковой», а определённый, выделяемый человеком порядок, строй, структуру (например, у Гомера – построение войска). Причём эта структурированность, определённость, упорядоченность рисовалась именно как противоположность абсолютно неупорядоченному, незакономерному, причинно необусловленному изменению – хаосу.

С самого своего зарождения в ткани древней культуры космология дополнялась учением о возникновении объектов космоса, происхождении и развитии самого наблюдаемого нами космоса – космогонией.

Возникнув в древности нa базе религиозно-мифологического мировоззрения, космология и космогония сводились к наивно-фантастическому, антропоморфному объяснению окружающего человека мира, и этот последний с его воздействующими на чувства человека реалиями рисовался людьми всецело земноподобным, геоцентричным. У всех без исключения древних и средневековых народов в основе космологии и космогонии лежит креационизм – учение о сотворении мира волей и деятельностью богов, антропоморфных существ, наделённых нечеловеческой силой и запредельным для человека знанием. Отрываясь от религиозно-мистической пуповины, космология и космогония стали натурфилософскими учениями, учитывающими данные конкретной науки, но строящимися в cвоих основах на умозрительном теоретизировании. А самое безудержное умозрение, как только оно отрывается от фактов, базируется опять-таки на земном наблюдательном и историческом опыте, заземляется на геоцентрические и антропоцентрические представления, выводимые из этого опыта. Это не умаляет, разумеется, достоинств конкретно-научной направленности космологии и космогонии Нового времени. Как уже говорилось, основной космологической моделью Нового времени была бесконечная в плоском евклидовом пространстве и вечная в абсолютном ньютоновском времени Вселенная, несотворимая и неразрушимая, наполненная безграничным множеством солнцеподобных звёзд со своими системами земноподобных планет. Всё в ней, от мельчайшего атома до крупнейшей звёздной системы считалось движущимся по законам классической механики, выведенным из земных экспериментов и наблюдений. Космогония этого периода по отношению к окружающему нас космосу как целому была, в сущности, антикосмогонией: она признавала космос вечно существующим, несотворимым и неуничтожимым.

Конечно, такое представление о Вселенной как мире в целом было важным достижением всё ещё наивного эволюционизма, отождествлявшего являющийся нам непосредственно геоцентрический «срез» космоса со всей материей Вселенной. Такой качественно однородный мир представлял собой дурную бесконечность, навязанную природе ограниченностью знания. В то же время ряд космогонических идей того времени, в особенности космогоническая теория Канта-Лапласа о происхождении Земли и других планет из сгустившихся газовых облаков, вводила в космогонию историческое видение, означала важную победу конкретно-научного космогонического исследования Вселенной. Сама Земля с этой точки зрения оказывалась возникшей из неземноподобной раскалённой газовой туманности. Недаром теория Канта-Лапласа coхранила свою жизнеспособность до сегодняшнего дня, в то время как сотни более респектабельных теоретических представлений за это время сделались всего лишь историческими реликвиями, вчерашним или даже позавчерашним днём науки.

К концу XIX века достраивается по всем направлением грандиозное здание классической науки, одним из стержневых элементов которого является устоявшаяся и общепринятая космологическая модель. Бесконечная и однородная в пространстве и времени, стационарная, т. е. устойчивая и постоянная, лишённая глобальных и всеохватных изменений, эта модель располагала космос в бескрайнем, но повсюду одинаковом плоском евклидовом пространстве и равномерно текущем, безотносительном к характеру протекания физических процессов, абсолютно одинаковом и равном себе, всеохватном ньютоновском времени. Вселенная в этой модели по своим пространственно-временным и прочим физическим характеристикам представлялась некоей копией с земного мира, что и неудивительно, поскольку наука того времени была ещё бессильна отобразить космические процессы иначе, нежели в их сугубо земных, непротиворечиво макроскопических проявлениях.

Но уже в конце века теоретиками был подмечен ряд несообразностей, ставивших под сомнение, по крайней мере, логическую непротиворечивость классической модели. Эти затруднения, проявившиеся как парадоксы бесконечного и конечного, были связаны с тем, что тривиально бесконечный космос, составленный по принципам этой модели, выглядел бы для земного наблюдателя и воздействовал бы на Землю совершенно иначе, чем тот, который мы имеем в действительности. Первая из этих трудностей, получившая название фотометрического парадокса, базировалась на следующем рассуждении. При равномерном расположении бесконечного числа звёзд светящаяся материя должна была бы заполнять всю небесную сферу, и в этом случае всё небо светилось бы так ярко, что даже Солнце выглядело бы на этом фоне чёрным пятном. Отсюда следовало, что либо число звёзд не бесконечно, т. е. сама Вселенная не бесконечна и где-то странным образом обрывается, либо – а в это особенно не хотелось верить, – классическая модель не отражает действительности, и Вселенная устроена как-то иначе.

В 1896 году немецкий астроном Зеелигер сформулировал второй парадокс, названный его именем, но известный также под названием «гравитационного парадокса». Согласно Зеелигеру, бесконечное количество звёзд и туманностей должно создавать бесконечно сильные гравитационные потенциалы и бесконечную энергию взаимодействия между любым макроскопическим телом и всей Вселенной.

К этим двум парадоксам, вносившим немалую сумятицу в умы исследователей, следует добавить и термодинамический парадокс, в соответствии с которым все виды энергии во Вселенной классической модели должны были перейти в теплоту, в результате чего Вселенная уже давно умерла бы «тепловой смертью». Равномерное распределение теплоты образовало бы в геоцентрически устроенном космосе сплошную «тепловую пустыню», уничтожавшую саму возможность существования жизни и даже самого космоса как определённого строения Вселенной,

Три парадокса огненной скрижалью нависли над устоявшейся космологической моделью, предрекая ей неминуемую гибель, так как отсутствие сколько-нибудь доказательной альтернативной модели делало присущий ей негеоцентризм неуязвимым. Подлинную альтернативу модели, базирующейся на геоцентрическом и плоско-макроскопическом изображении бесконечности могла составить лишь такая модель, которая приступила бы к многообразно-негеоценгрическому изображению бесконечности. А для этого нужно было создать принципиально новые изобразительные средства, которые нашлись лишь в математическом аппарате теории относительности.

Принципиально новый этап развития космологии начался в XX веке. Можно с абсолютной точностью назвать год, в который это произошло. В 1917 году Альберт Эйнштейн распространил на космологию выводы ранее созданной им общей теории относительности и тем самым заложил основы по-новому негеоцентрической теории космоса. Это было революционное свершение, открывшее путь к целому ряду других революционных свершений, обновивших сам фундамент наших представлений о Вселенной.

Вселенная Эйнштейна представляла собой трёхмерную сферу, закрученную в четырёхмерном пространстве-времени и замкнутую саму на себя. Объём этой Вселенной был конечен.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47